【題目】如圖所示,已知△ABC中,∠ACB=90°,SA⊥平面ABC,ADSC,求證:AD⊥平面SBC.

【答案】詳見解析

【解析】試題分析:由線面垂直性質(zhì)定理得SABC,再根據(jù)BCAC,利用線面垂直判定定理得BC⊥平面SAC,即得BCAD,最后根據(jù)ADSC,利用線面垂直判定定理得結(jié)論

試題解析:∵∠ACB90°,BCAC.又SA平面ABC,SABCSAACABC平面SAC,BCAD.又SCAD,SCBCCAD平面SBC.

點睛:垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型.

(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行.

(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直.

(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個焦點與拋物線的焦點重合,且點到直線的距離為, 的公共弦長為.

(1)求橢圓的方程及點的坐標(biāo);

(2)過點的直線交于兩點,與交于兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某科技興趣小組對晝夜溫差的大小與小麥新品種發(fā)芽多少之間的關(guān)系進(jìn)行了研究,記錄了2016年12月1日至12月5日五天的晝夜溫差與相應(yīng)每天100顆種子的發(fā)芽得到了如下數(shù)據(jù):

日期

12月1日

12月2日

12月3日

12月4日

12月5日

溫差

9

11

10

12

13

發(fā)芽數(shù)(顆)

21

34

26

36

40

現(xiàn)從這5組數(shù)據(jù)中任選兩組,用余下的三組數(shù)據(jù)求回歸直線方程,再對被選取的兩組數(shù)據(jù)進(jìn)行檢驗.

(Ⅰ)求選取的兩組數(shù)據(jù)恰好是不相鄰的兩天的概率;

(Ⅱ)若選取的是12月1日和12月5日的兩組數(shù)據(jù),請根據(jù)余下的三組數(shù)據(jù),求出的線性回歸直線方程;

(Ⅲ)若由線性回歸直線方程得到的估計值與所選出的兩組實際數(shù)據(jù)的誤差均不超過兩顆,則認(rèn)為得到的回歸直線方程是可靠的,試判斷(Ⅱ)中得到的線性回歸直線方程是否可靠.

附:在線性回歸方程中,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某幾何體的三視圖如圖所示,P是正方形ABCD對角線的交點,GPB的中點.

(1)根據(jù)三視圖,畫出該幾何體的直觀圖.

(2)在直觀圖中,①證明:PD∥平面AGC;

②證明:平面PBD⊥平面AGC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)全集U{2,4,-(a3)2},集合A{2,a2a2},若UA{1},求實數(shù)a的值. (2)已知A{x|2axa3},B{x|x<1x>5},若AB,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解兩班學(xué)生寒假期間觀看《中國詩詞大會》的時長,分別從這兩個班中隨機抽取5名學(xué)生進(jìn)行調(diào)查,將他們觀看的時長(單位:小時)作為樣本,繪制成莖葉圖如圖所示(圖中的莖表示十位數(shù)字,葉表示個位數(shù)字).

(1)分別求出圖中所給兩組樣本數(shù)據(jù)的平均值,并據(jù)此估計哪個班的學(xué)生平均觀看的時間較長;

(2)從班的樣本數(shù)據(jù)中隨機抽取一個不超過19的數(shù)據(jù)記為,從班的樣本數(shù)據(jù)中隨機抽取一個不超過21的數(shù)據(jù)記為,求的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,直線過定點

(1)若直線與圓相切,求直線的方程。

(2)若直線與圓相交于兩點,且,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(-x2+x-1)ex,其中e是自然對數(shù)的底數(shù).

(1)求曲線f(x)在點(1,f(1))處的切線;

(2)若方程f(x)=x3x2+m有3個不同的根,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

)求方程的實數(shù)解;

)如果數(shù)列滿足,),是否存在實數(shù),使得對所有的都成立?證明你的結(jié)論.

)在()的條件下,設(shè)數(shù)列的前項的和為,證明:

查看答案和解析>>

同步練習(xí)冊答案