A. | $\frac{3}{5}$ | B. | -$\frac{3}{5}$ | C. | $\frac{4}{5}$ | D. | -$\frac{4}{5}$ |
分析 由兩角和差的正切公式求得tanx,再由同角三角函數(shù)的關系求得sin2x.
解答 解:由tan($\frac{π}{4}$-x)=2,得$\frac{tan\frac{π}{4}-tanx}{1+tan\frac{π}{4}tanx}=2$,
即$\frac{1-tanx}{1+tanx}=2$,解得tanx=-$\frac{1}{3}$.
∴sin2x=$\frac{2tanx}{1+ta{n}^{2}x}=\frac{-\frac{2}{3}}{1+\frac{1}{9}}=-\frac{3}{5}$.
故選:B.
點評 本題考查三角函數(shù)的化簡求值,考查了兩角和差的正切公式以及同角的三角函數(shù)的關系,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0.45 | B. | 0.05 | C. | 0.4 | D. | 0.6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{3}{5}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2 | B. | 2 | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 函數(shù)y=(x+a)2+b的圖象經(jīng)過點(a,b) | |
B. | 函數(shù)y=ax(a>0且a≠1)的圖象經(jīng)過點(1,0) | |
C. | 函數(shù)y=logax(a>0且a≠1)的圖象經(jīng)過點(0,1) | |
D. | 函數(shù)y=xa(a∈R)的圖象經(jīng)過點(1,1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若l∥α,α∥β,則l∥β | B. | 若l⊥α,α∥β,則l⊥β | C. | 若l⊥α,α⊥β,則l∥β | D. | 若l∥α,α⊥β,則l⊥β |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com