【題目】2016年1月1日,我國全面實行二孩政策,某機構(gòu)進行了街頭調(diào)查,在所有參與調(diào)查的青年男女中,持“響應”“猶豫”和“不響應”態(tài)度的人數(shù)如下表所示:
響應 | 猶豫 | 不響應 | |
男性青年 | 500 | 300 | 200 |
女性青年 | 300 | 200 | 300 |
根據(jù)已知條件完成下面的列聯(lián)表,并判斷能否有的把握認為猶豫與否與性別有關(guān)?請說明理由.
猶豫 | 不猶豫 | 總計 | |
男性青年 | |||
女性青年 | |||
總計 | 1800 |
參考公式:
參考數(shù)據(jù):
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,其中.
(Ⅰ)若函數(shù)在區(qū)間(1,e)存在零點,求實數(shù)a的取值范圍;
(Ⅱ)若對任意的,都有≥成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的頂點為坐標原點,焦點在軸的正半軸上,過焦點作斜率為的直線交拋物線于兩點,且,其中為坐標原點.
(1)求拋物線的方程;
(2)設(shè)點,直線分別交準線于點,問:在軸的正半軸上是否存在定點,使,若存在,求出定點的坐標,若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,∠BAD=,AB=BC=AD=a,E是AD的中點,O是AC與BE的交點.將△ABE沿BE折起到如圖2中△A1BE的位置,得到四棱錐A1-BCDE.
(Ⅰ)證明:CD⊥平面A1OC;
(Ⅱ)當平面A1BE⊥平面BCDE時,四棱錐A1-BCDE的體積為36,求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某家庭進行理財投資,根據(jù)長期收益率市場預測,投資債券等穩(wěn)健型產(chǎn)品的年收益與投資額成正比,投資股票等風險型產(chǎn)品的年收益與投資額的算術(shù)平方根成正比.已知投資1萬元時兩類產(chǎn)品的年收益分別為0.125萬元和0.5萬元(如圖).
(1)分別寫出兩種產(chǎn)品的年收益與投資額的函數(shù)關(guān)系式;
(2)該家庭現(xiàn)有20萬元資金,全部用于理財投資,問:怎么分配資金能使投資獲得最大年收益,其最大年收益是多少萬元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點為拋物線內(nèi)一定點,過作兩條直線交拋物線于,且分別是線段的中點.
(1)當時,求△的面積的最小值;
(2)若且,證明:直線過定點,并求定點坐標。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè),正項數(shù)列的前項的積為,且,當時, 都成立.
(1)若, , ,求數(shù)列的前項和;
(2)若, ,求數(shù)列的通項公式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com