函數(shù)y=
1+sinx
1-sinx
的值域為
 
考點:三角函數(shù)的最值
專題:三角函數(shù)的求值
分析:函數(shù)題意可得sinx=
y-1
y+1
,再根據(jù)-1≤sinx<1,可得-1≤
y-1
y+1
<1,即
2y
y+1
≥0
-2
y+1
<0
,由此求得y的范圍.
解答: 解:函數(shù)y=
1+sinx
1-sinx
可得sinx=
y-1
y+1
,再根據(jù)-1≤sinx<1,可得-1≤
y-1
y+1
<1,
2y
y+1
≥0
-2
y+1
<0
,求得y≥0,
故答案為:{y|y≥0}.
點評:本題主要考查用反函數(shù)法求函數(shù)的值域,分式不等式的解法,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=
1-i
i
的虛部是(  )
A、1B、-1C、iD、-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點分別是F1,F(xiàn)2,過點F1的直線l交橢圓C于A,B兩點,若△AF2B的周長為16,過焦點F1且垂直于長軸的直線被橢圓截得的線段長為2,則橢圓C的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若橢圓mx2+ny2=1(m>0,n>0)與直線x+y-1=0交于A,B兩點,若m:n=1:
2
,則過原點與線段AB的中點M的連線的斜率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足f(
x1
x2
)=f(x1)-f(x2),且當(dāng)x>1時,f(x)>0,求f(1),并判斷f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

向由平面直角坐標(biāo)系中的四點(0,0),(1,0),(1,1),(0,1)所圍成的平面區(qū)域中任意拋擲一粒黃豆,則該黃豆落在曲線y=x3和y=
3x
所圍成的平面區(qū)域內(nèi)的概率為( 。
A、
1
4
B、
1
3
C、
1
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC三個內(nèi)角A,B,C的對邊分別為a,b,c,且滿足2bcosC+c=2a
(Ⅰ)求B;
(Ⅱ)若a=2,且sin(2A+
π
6
)+cos2A=
3
2
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,b>1,若a+b=2,則
2
a
+
1
b
-1的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-4:坐標(biāo)系與參數(shù)方程
已知直線l的參數(shù)方程為
x=2+
2
2
t
y=
2
2
t
(t為參數(shù)),曲線C的參數(shù)方程為
x=4cosθ
y=2
3
sinθ
(θ為參數(shù)),設(shè)直線l與曲線C交于A、B兩點.
(1)求直線l與曲線C的普通方程;
(2)設(shè)P(2,0),求|PA|•|PB|的值.

查看答案和解析>>

同步練習(xí)冊答案