【題目】已知橢圓的長軸長為4,且經(jīng)過點.
(1)求橢圓的方程;
(2)直線的斜率為,且與橢圓相交于,兩點(異于點),過作的角平分線交橢圓于另一點.
(i)證明:直線與坐標軸平行;
(ii)當(dāng)時,求四邊形的面積
【答案】(1);(2)(i)見解析,(ii)
【解析】
(1)根據(jù)題意,將點代入橢圓方程即可求解.
(2)(i)利用分析法,只需證直線的方程為或,只需證,斜率都存在,且滿足即可,設(shè)直線:,,,將直線與橢圓聯(lián)立,消,利用韋達定理求出即可證出;(ii)可知直線和的傾斜角應(yīng)該分別為,,即斜率分別為1和-1,不妨令,,求出直線的方程,將直線方程與橢圓方程聯(lián)立,求出點的坐標,同理求出點,再利用三角形的面積公式即可求解.
(1)解:,將代入橢圓方程,得,
解得,故橢圓的方程為.
(2)(i)證明:∵平分,欲證與坐標軸平行,
即證明直線的方程為或,
只需證,斜率都存在,且滿足即可.
當(dāng)或斜率不存在時,即點或點為,
經(jīng)檢驗,此時直線與橢圓相切,不滿足題意,故,斜率都存在.
設(shè)直線:,,,
聯(lián)立,
,∴,
由韋達定理得,,
,
,得證.
(ii)解:若,即,
則可知直線和的傾斜角應(yīng)該分別為,,
即斜率分別為1和-1,不妨就令,,
則:,即,
,
已知是其一個解,故,∴,∴,
同理,可得,
,
因為,故的方程只能是.
設(shè)直線的傾斜角為,與所成角為,故,
而,故,∴,
又,故.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)若不等式對任意的,都成立,求實數(shù)m的取值范圍;
(2)關(guān)于x的方程在上有且只有一個解,求實數(shù)k的取值范圍.
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地自2014年至2019年每年年初統(tǒng)計所得的人口數(shù)量如表所示:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
人數(shù)(單位:千人) | 2082 | 2135 | 2203 | 2276 | 2339 | 2385 |
(1)根據(jù)表中的數(shù)據(jù)判斷從2014年到2019年哪個跨年度的人口增長數(shù)量最大?并描述該地人口數(shù)量的變化趨勢;
(2)研究人員用函數(shù)擬合該地的人口數(shù)量,其中的單位是年,2014年年初對應(yīng)時刻,的單位是千人,經(jīng)計算可得,請解釋的實際意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列有關(guān)命題的說法正確的是___(請?zhí)顚懰姓_的命題序號).
①命題“若,則”的否命題為:“若,則”;
②命題“若,則”的逆否命題為真命題;
③條件,條件,則是的充分不必要條件;
④已知時,,若是銳角三角形,則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),若以O為極點,x軸的正半軸為極軸且取相同的單位長度建立極坐標系,曲線C的極坐標方程為.
(1)求曲線C的直角坐標方程及直線l的普通方程;
(2)將所得曲線C向右平移1個單位長度,再將曲線C上的所有點的橫坐標變?yōu)樵瓉淼?/span>2倍,得到曲線,求曲線上的點到直線l的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某區(qū)在2019年教師招聘考試中,參加、、、四個崗位的應(yīng)聘人數(shù)、錄用人數(shù)和錄用比例(精確到1%)如下:
崗位 | 男性應(yīng)聘人數(shù) | 男性錄用人數(shù) | 男性錄用比例 | 女性應(yīng)聘人數(shù) | 女性錄用人數(shù) | 女性錄用比例 |
269 | 167 | 62% | 40 | 24 | 60% | |
217 | 69 | 32% | 386 | 121 | 31% | |
44 | 26 | 59% | 38 | 22 | 58% | |
3 | 2 | 67% | 3 | 2 | 67% | |
總計 | 533 | 264 | 50% | 467 | 169 | 36% |
(1)從表中所有應(yīng)聘人員中隨機抽取1人,試估計此人被錄用的概率;
(2)將應(yīng)聘崗位的男性教師記為,女性教師記為,現(xiàn)從應(yīng)聘崗位的6人中隨機抽取2人.
(i)試用所給字母列舉出所有可能的抽取結(jié)果;
(ii)設(shè)為事件“抽取的2人性別不同”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,△ABC是邊長為6的等邊三角形,D,E分別為AA1,BC的中點.
(1)證明:AE//平面BDC1;
(2)若異面直線BC1與AC所成角的余弦值為.求DE與平面BDC1所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)直線在矩陣所對應(yīng)的變換下得到直線,求的方程.
(2)已知點是曲線(為參數(shù),)上一點,為坐標原點直線的傾斜角為,求點的坐標.
(3)求不等式的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com