【題目】在某次測量中得到的A樣本數(shù)據(jù)如下:52,54,54,56,56,56,55,55,55,55.若B樣本數(shù)據(jù)恰好是A樣本數(shù)據(jù)都加6后所得數(shù)據(jù),則A,B兩樣本的下列數(shù)字特征對應(yīng)相同的是(  )

A. 眾數(shù) B. 平均數(shù)

C. 中位數(shù) D. 標準差

【答案】D

【解析】

分別求出兩樣本的眾數(shù)、平均數(shù)中位數(shù)結(jié)合標準差的意義,即可得結(jié)果.

由題意可知樣本的數(shù)據(jù)為58,60,60,62,62,62,61,61,61,61,

樣本中的數(shù)據(jù)由小到大依次排列為52,54,54,55,55,55,55,56,56,56,

樣本中的數(shù)據(jù)由小到大依次排列為58,60,60,61,61,61,61,62,62,62,

因此樣本的眾數(shù)為樣本的眾數(shù)為選項錯誤;

樣本的平均數(shù)為樣本的平均數(shù)為選項錯誤

樣本的中位數(shù)為樣本的中位數(shù)為選項錯誤;

事實上,在樣本的每個數(shù)據(jù)上加上6后形成樣本,

樣本的穩(wěn)定性不變,因此兩個樣本的標準差相等,故選D.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:(x+)2+y2=16,點A(,0),Q是圓上一動點,AQ的垂直平分線交CQ于點M,設(shè)點M的軌跡為E.

(1)求軌跡E的方程;

(2)過點P(1,0)的直線交軌跡E于兩個不同的點A,B,△AOB(O是坐標原點)的面積S=,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于下列命題: ①在△ABC中,若sin2A=sin2B,則△ABC為等腰三角形;
②已知a,b,c是△ABC的三邊長,若a=2,b=5, ,則△ABC有兩組解;
③設(shè) , , ,則a>b>c;
④將函數(shù) 圖象向左平移 個單位,得到函數(shù) 圖象.
其中正確命題的序號是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x)是定義在R上的奇函數(shù),且當x0,f(x)=-x2+ax.

(1)a=-2,求函數(shù)f(x)的解析式;

(2)若函數(shù)f(x)R上的單調(diào)減函數(shù),

a的取值范圍;

若對任意實數(shù)m,f(m-1)+f(m2+t)<0恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國共產(chǎn)黨第十九次全國代表大會于2017年10月18日至10月24日在北京召開,會議提出“決勝全面建成小康社會”.某市積極響應(yīng)開展“脫貧攻堅”,為2020年“全面建成小康社會”貢獻力量.為了解該市農(nóng)村“脫貧攻堅”情況,從某縣調(diào)查得到農(nóng)村居民2011年至2017年家庭人均純收入(單位:百元)的數(shù)據(jù)如下表:

注:小康的標準是農(nóng)村居民家庭年人均純收入達到8000元.

年 份

2011

2012

2013

2014

2015

2016

2017

年人均純收入y百元

41

45

48

56

60

64

71

(Ⅰ)求關(guān)于的線性回歸方程;

(Ⅱ)利用(Ⅰ)中的回歸方程,預(yù)測2020年該縣農(nóng)村居民家庭年人均純收入指標能否達到“全面建成小康社會”的標準?

附:回歸直線斜率和截距的最小二乘估計公式分別為:

,,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知p:關(guān)于x的不等式|x﹣2|+|x+2|>m的解集是R; q:關(guān)于x的不等式x2+mx+4>0的解集是R.則p成立是q成立的(
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.即不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的不等式|ax﹣2|<3的解集為{x|﹣ <x< },則a=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以原點為圓心,半徑為的圓 與直線相切.

(1)直線過點截圓所得弦長為求直線 的方程;

(2)設(shè)圓軸的正半軸的交點為,過點作兩條斜率分別為 的直線交圓兩點,且 ,證明:直線恒過一個定點,并求出該定點坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩人玩猜數(shù)字游戲,先由甲心中任想一個數(shù)字記為,再由乙猜甲剛才想的數(shù)字,把乙猜的數(shù)字記為,且.若,則稱甲乙“心有靈犀”.現(xiàn)任意找兩人玩這個游戲,則二人“心有靈犀”的概率為__________

查看答案和解析>>

同步練習冊答案