18.已知角α終邊上一點P(2m,1),且$sinα=\frac{1}{3}$.
(1)求實數(shù)m的值;
(2)求tanα的值.

分析 (1)由條件利用任意角的三角函數(shù)的定義以及$sinα=\frac{1}{3}$,求得實數(shù)m的值.
(2)根據(jù)(1)中求出的m值,利用任意角的三角函數(shù)的定義求得tanα的值.

解答 解:(1)角α終邊上一點P(2m,1),且$sinα=\frac{1}{3}$,可得$\frac{1}{{\sqrt{4{m^2}+1}}}=\frac{1}{3}$,求得$m=±\sqrt{2}$.
(2)當(dāng)$m=\sqrt{2}$時,tanα=$\frac{1}{2m}$=$\frac{1}{2\sqrt{2}}$=$\frac{\sqrt{2}}{4}$;當(dāng)$m=-\sqrt{2}$時,tanα=$\frac{1}{2m}$=$\frac{1}{-2\sqrt{2}}$=-$\frac{\sqrt{2}}{4}$.

點評 本題主要考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,四棱錐P-ABCD,側(cè)面PAD是邊長為2的正三角形,且與底面垂直,底面ABCD是∠ABC=60°的菱形,M為PC的中點.
(1)求證:PC⊥AD;
(2)求直線MD與平面ABCD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.A={α=$\frac{5kπ}{3}$,k∈Z},B={β=$\frac{3kπ}{2}$,k∈Z},A∩B={0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.甲盒有標(biāo)號分別為1、2、3的3個紅球;乙盒有標(biāo)號分別為1、2、…、n(n≥2)的n個黑球,從甲、乙兩盒中各抽取一個小球,抽到標(biāo)號為1號紅球和n號黑球的概率為$\frac{1}{12}$.
(Ⅰ)求n的值;
(Ⅱ)現(xiàn)從甲乙兩盒各隨機(jī)抽取1個小球,抽得紅球的得分為其標(biāo)號數(shù);抽得黑球,若標(biāo)號數(shù)為奇數(shù),則得分為1,若標(biāo)號數(shù)為偶數(shù),則得分為0,設(shè)被抽取的2個小球得分之和為ξ,求ξ的數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若隨機(jī)變量η的分布列如下:
η-2-10123
P0.10.20.20.30.10.1
則當(dāng)P(η<x)=0.8時,實數(shù)x的取值范圍是(1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若a2-b2+ac=0,A=30°,△ABC的面積為2$\sqrt{3}$,D為AB的中點,則CD=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.有一質(zhì)量非均勻分布的細(xì)棒,已知其線密度為ρ(x)=x3(取細(xì)棒所在的直線為x軸,細(xì)棒的一端為原點),棒長為1,試用定積分表示細(xì)棒的質(zhì)量M=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)斜率為2的直線l過拋物線y2=ax(a≠0)的焦點F,且和y軸交于點A,若△OAF(O為坐標(biāo)原點)的面積為4,則△OAF外接圓方程為( 。
A.(x+1)2+(y-2)2=5B.(x-1)2+(y+2)2=5C.(x±1)2+(y?2)2=5D.(x±1)2+(y±2)2=5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在數(shù)列{an}中,a1=1,an+1-an=2n,則a50的值為( 。
A.2550B.2551C.2450D.2451

查看答案和解析>>

同步練習(xí)冊答案