分析 (1)由已知及正弦定理可得${a^2}+{b^2}-{c^2}=\frac{{\sqrt{10}}}{5}ab$,利用余弦定理可求cosC,利用同角三角函數(shù)基本關(guān)系式可求sinC,sinA的值,進而利用三角形內(nèi)角和定理,誘導(dǎo)公式,兩角和的余弦函數(shù)公式可求cosB,解得B的范圍即可得解B的值.
(2)利用正弦定理可求c,進而利用三角形面積公式即可計算得解.
解答 解:(1)由已知可得${a^2}+{b^2}-{c^2}=\frac{{\sqrt{10}}}{5}ab$,
∴$cosC=\frac{{{a^2}+{b^2}-{c^2}}}{2ab}=\frac{{\sqrt{10}}}{10}$.
∵A,C∈(0,π),
∴$sinC=\frac{{3\sqrt{10}}}{10}$,$sinA=\frac{{2\sqrt{5}}}{5}$,
∴cosB=-cos(A+C)=-($\frac{\sqrt{5}}{5}×\frac{\sqrt{10}}{10}$-$\frac{3\sqrt{10}}{10}×\frac{2\sqrt{5}}{5}$)=$\frac{\sqrt{2}}{2}$,
∵B∈(0,π),
∴B=$\frac{π}{4}$.
(2)∵$\frac{sinB}=\frac{c}{sinC}$=10$\sqrt{2}$,
∴c=10$\sqrt{2}×$$\frac{3\sqrt{10}}{10}$=6$\sqrt{5}$,
∴$S=\frac{1}{2}bcsinA=\frac{1}{2}×10×6\sqrt{5}×\frac{{2\sqrt{5}}}{5}=60$.
點評 本題主要考查了正弦定理,余弦定理,同角三角函數(shù)基本關(guān)系式,三角形內(nèi)角和定理,誘導(dǎo)公式,兩角和的余弦函數(shù)公式,三角形面積公式在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,熟練掌握相關(guān)公式的應(yīng)用是解題的關(guān)鍵,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{17\sqrt{6}}{2}$ 海里/時 | B. | 34$\sqrt{6}$海里/時 | C. | $\frac{17\sqrt{2}}{2}$海里/時 | D. | 34$\sqrt{2}$海里/時 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{2}$,+∞) | B. | (-∞,$\frac{1}{4}$] | C. | (-∞,0)∪($\frac{1}{2}$,+∞) | D. | [$\frac{1}{2}$,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com