3.計(jì)算:eln3+log${\;}_{\sqrt{3}}$9+0.125${\;}^{-\frac{2}{3}}$=11.

分析 利用指數(shù)冪與對數(shù)的運(yùn)算法則即可得出.

解答 解:原式=3+$lo{g}_{3}{3}^{4}$+$(\frac{1}{2})^{3×(-\frac{2}{3})}$=3+4+2-1×(-2)=11.
故答案為:11.

點(diǎn)評 本題考查了指數(shù)冪與對數(shù)的運(yùn)算法則,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若函數(shù)f(x)=2x-$\frac{1}{x}$的零點(diǎn)為a,則loga2與loga3的大小關(guān)系為loga2>loga3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求經(jīng)過兩直線3x+4y-5=0與2x-3y+8=0的交點(diǎn)M,且與直線l1:2x+y+5=0平行的直線l2的方程,并求l1與l2間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知直線經(jīng)過點(diǎn)A(0,4)和點(diǎn)B(1,0),則直線AB的斜率為( 。
A.3B.-4C.4D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列對應(yīng)關(guān)系:( 。
①A={1,4,9},B={-3,-2,-1,1,2,3},f:x→x的平方根
②A=R,B=R,f:x→x的倒數(shù)
③A=R,B=R,f:x→x2-2
④A={-1,0,1},B={-1,0,1},f:A中的數(shù)平方
其中是A到B的映射的是( 。
A.①③B.②④C.③④D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知x,y均為非負(fù)實(shí)數(shù),且滿足$\left\{\begin{array}{l}{x+y≤1}\\{4x+y≤2}\end{array}\right.$,則z=x+2y的最大值為( 。
A.1B.$\frac{1}{2}$C.$\frac{5}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在△ABC中,三個內(nèi)角A,B,C的對邊分別為a,b,c,cosA=$\frac{{\sqrt{5}}}{5}$,asinA+bsinB-csinC=$\frac{{\sqrt{10}}}{5}$asinB.
(1)求B的值;
(2)設(shè)b=10,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知命題p:?x∈R,sinx+cosx≥$\sqrt{2}$,命題q:?x∈R,x2>0,則( 。
A.命題p∨q是假命題B.命題p∧q是真命題
C.命題p∧(¬q)是假命題D.命題p∧(¬q)是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=loga(x+1),g(x)=loga(x-1)(a>0且a≠1)
(1)判斷函數(shù)f(x)+g(x)的奇偶性,并說明理由;
(2)求使f(x)-g(2x)>0成立的x的集合.

查看答案和解析>>

同步練習(xí)冊答案