【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系.直線的極坐標方程為

(1)求曲線的極坐標方程與直線的直角坐標方程;

(2)已知直線與曲線交于兩點,與軸交于點,求

【答案】(1),直線;(2)1

【解析】

(1)由曲線C的參數(shù)方程,能求出曲線C的普通方程,由此能求出曲線C的極坐標方程;直線l的極坐標方程轉化為ρcosα+ρsinα=2,由此能求出直線l的直角坐標方程.

(2)聯(lián)立,求出M,N的坐標,在直線lx+y﹣2=0中,令y=0,得P(2,0),由此能求出|PM||PN|.

(1)∵曲線的參數(shù)方程為為參數(shù)),

∴曲線的普通方程為,即,

∴曲線的極坐標方程為

∵直線的極坐標方程為

,即

∴直線的直角坐標方程為

(2)聯(lián)立,得,

∴可設,

在直線中,令,得

,

,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓過定點,且與定直線相切.

1)求動圓圓心的軌跡的方程;

2)過點的任一條直線與軌跡交于不同的兩點,試探究在軸上是否存在定點(異于點),使得?若存在,求點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C,直線1過原點O

1)若直線l與圓C相切,求直線l的斜率;

2)若直線l與圓C交于A、B兩點,點P的坐標為,若.求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠去年某產(chǎn)品的年產(chǎn)量為100萬只,每只產(chǎn)品的銷售價為10元,固定成本為8今年,工廠第一次投入100萬元科技成本,并計劃以后每年比上一年多投入100萬元科技成本,預計產(chǎn)量年遞增10萬只,第次投入后,每只產(chǎn)品的固定成本為為常數(shù),,若產(chǎn)品銷售價保持不變,第次投入后的年利潤為萬元.

1)求的值,并求出的表達式;

2)問從今年算起第幾年利潤最高?最高利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,函數(shù)

(1)若無零點,求實數(shù)的取值范圍.

(2)若,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題正確的是

(1)命題“,”的否定是“”;

(2)l為直線,,為兩個不同的平面,若,,則;

(3)給定命題p,q,若“為真命題”,則是假命題;

(4)“”是“”的充分不必要條件.

A. (1)(4)B. (2)(3)C. (3)(4)D. (1)(3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,曲線C1的參數(shù)方程為t為參數(shù)),曲線C2的參數(shù)方程為(α為參數(shù)),以O為極點,x軸的正半軸為極軸建立極坐標系.

1)求曲線C1C2的極坐標方程;

2)直線l的極坐標方程為,直線l與曲線C1C2分別交于不同于原點的A,B兩點,求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知一列非零向量滿足:(其中是非零常數(shù)).

(1)求數(shù)列的通項公式;

(2)求向量夾角的弧度數(shù)

(3),中所有與共線的向量按原來的順序排成一列,記為為坐標原點,求點列的極限點D的坐標.(:若點坐標為則稱點D為點列的極限點).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計數(shù)的. [附:回歸直線的斜率和截距的最小二乘估計公式分別為.]

(1)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;

(2)試估計該公司投入萬元廣告費用之后,對應銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);

(3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:

廣告投入 (單位:萬元)

1

2

3

4

5

銷售收益 (單位:萬元)

2

3

2

7

由表中的數(shù)據(jù)顯示, 之間存在著線性相關關系,請將(2)的結果填入空白欄,并求出關于的回歸直線方程.

查看答案和解析>>

同步練習冊答案