【題目】下列命題正確的是

(1)命題“,”的否定是“,”;

(2)l為直線,,為兩個不同的平面,若,則

(3)給定命題p,q,若“為真命題”,則是假命題;

(4)“”是“”的充分不必要條件.

A. (1)(4)B. (2)(3)C. (3)(4)D. (1)(3)

【答案】D

【解析】

逐個命題進(jìn)行判定,對于(1)結(jié)合全稱命題的否定方法可以判定;對于(2)要考慮全面直線與平面的位置關(guān)系;對于(3)根據(jù)復(fù)合命題的真假進(jìn)行判斷;對于(4)利用可以判定.

對于(1)“”的否定就是“,”,正確;

對于(2)直線可能在平面內(nèi),所以不能得出,故不正確;

對于(3)若“為真命題”則均為真命題,故是假命題,正確;

對于(4)因?yàn)?/span>時可得,反之不能得出,故“”是“”的必要不充分條件,故不正確.故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x)=-x3+ax2+b(a,b∈R).

(1)當(dāng)a>0時,若f(x)滿足:y極小值=1,y極大值=,試求f(x)的解析式;

(2)若x∈[0,1]時,y=f(x)圖象上的任意一點(diǎn)處的切線斜率k滿足:|k|≤1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班50名學(xué)生在一次百米測試中,成績?nèi)拷橛?3秒與18秒之間,將測試結(jié)果按如下方式分成五組:第一組,第二組,…,第五組,下圖是按上述分組方法得到的頻率分布直方圖.

(1)若成績大于等于14秒且小于16秒為良好,求該班在這次百米測試中成績良好的人數(shù);

(2)若從第一、五組中隨機(jī)取出兩個成績,求這兩個成績的差的絕對值大于1的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城鎮(zhèn)社區(qū)為了豐富轄區(qū)內(nèi)廣大居民的業(yè)余文化生活,創(chuàng)建了社區(qū)“文化丹青”大型活動場所,配備了各種文化娛樂活動所需要的設(shè)施,讓廣大居民健康生活、積極向上.社區(qū)最近四年內(nèi)在“文化丹青”上的投資金額統(tǒng)計數(shù)據(jù)如表:(為了便于計算,把2015年簡記為5,其余以此類推)

年份(年)

5

6

7

8

投資金額(萬元)

15

17

21

27

(1)利用所給數(shù)據(jù),求出投資金額與年份之間的回歸直線方程

(2)預(yù)測該社區(qū)在2019年在“文化丹青”上的投資金額.

(附:對于一組數(shù)據(jù), ,…, ,其回歸直線的斜率和截距的最小二乘估計分別為, .)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)已知扇形的周長為8,面積是4,求扇形的圓心角.

(2)已知扇形的周長為40,當(dāng)它的半徑和圓心角取何值時,才使扇形的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若處取極大值,且極大值為7,在處取極小值.

(1)求a,b,c的值;

(2)求函數(shù)在[0, 4]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)工會利用 “健步行APP”開展健步走積分獎勵活動會員每天走5千步可獲積分30分(不足5千步不積分),每多走2千步再積20分(不足2千步不積分)為了解會員的健步走情況,工會在某天從系統(tǒng)中隨機(jī)抽取了1000名會員,統(tǒng)計了當(dāng)天他們的步數(shù),并將樣本數(shù)據(jù)分為 , , , , , , 九組,整理得到如下頻率分布直方圖

求當(dāng)天這1000名會員中步數(shù)少于11千步的人數(shù);

從當(dāng)天步數(shù)在, , 的會員中按分層抽樣的方式抽取6人,再從這6人中隨機(jī)抽取2人,求這2人積分之和不少于200分的概率;

寫出該組數(shù)據(jù)的中位數(shù)(只寫結(jié)果)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】0, 1, 2, 3, 4, 5這六個數(shù)字, 可以組成______個無重復(fù)數(shù)字的三位數(shù), 也可以組成______個能被5整除且無重復(fù)數(shù)字的五位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】Monte-Carlo方法在解決數(shù)學(xué)問題中有廣泛的應(yīng)用.下面利用Monte-Carlo方法來估算定積分.考慮到等于由曲線,軸,直線所圍成的區(qū)域的面積,如圖,在外作一個邊長為1正方形OABC.在正方形OABC內(nèi)隨機(jī)投擲n個點(diǎn),若n個點(diǎn)中有m個點(diǎn)落入M中,則M的面積的估計值為,此即為定積分的估計值.現(xiàn)向正方形OABC中隨機(jī)投擲10000個點(diǎn),以X表示落入M中的點(diǎn)的數(shù)目.

(1)求X的期望和方差;

(2)求用以上方法估算定積分時,的估計值與實(shí)際值之差在區(qū)間(-0.01,0.01)的概率.

附表:

1899

1900

1901

2099

2100

2101

0.0058

0.0062

0.0067

0.9933

0.9938

0.9942

查看答案和解析>>

同步練習(xí)冊答案