7.下列各組中的兩個(gè)函數(shù)是同一函數(shù)的是( 。
A.f(x)=lgx+lg(x-1),g(x)=lg[x(x-1)]B.f(x)=$\frac{\sqrt{1-{x}^{2}}}{|x+2|-2}$,g(x)=$\frac{\sqrt{1-{x}^{2}}}{x}$
C.y=f(x)與y=f(x-3)D.f(x)=|x|+|x-1|,g(x)=2x-1

分析 判斷函數(shù)的定義域與函數(shù)的對(duì)應(yīng)法則是否相同即可.

解答 解:f(x)=lgx+lg(x-1),g(x)=lg[x(x-1)]兩個(gè)函數(shù)的定義域不相同,所以不是相同的函數(shù).
f(x)=$\frac{\sqrt{1-{x}^{2}}}{|x+2|-2}$,g(x)=$\frac{\sqrt{1-{x}^{2}}}{x}$,x=-2,兩個(gè)函數(shù)的定義域相同,對(duì)應(yīng)法則相同,所以是相同的函數(shù).
y=f(x)與y=f(x-3),兩個(gè)函數(shù)的定義域已經(jīng)對(duì)應(yīng)法則不相同,不是相同的函數(shù).
f(x)=|x|+|x-1|,g(x)=2x-1,兩個(gè)函數(shù)的對(duì)應(yīng)法則不相同,所以不是相同的函數(shù).
故選:B.

點(diǎn)評(píng) 本題考查函數(shù)的定義域與函數(shù)的對(duì)應(yīng)法則的判斷,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知平行四邊形ABCD中,AB=1,BC=2$\sqrt{2}$,∠BAD=135°,則$\overrightarrow{AC}$•$\overrightarrow{BC}$=(  )
A.-6B.-8C.8D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知向量$\overrightarrow{a}$=(cosθ,sinθ),$\overrightarrow$=(2,-1).
(1)若$\overrightarrow{a}⊥\overrightarrow$,求$\frac{sinθ-cosθ}{sinθ+cosθ}$的值;
(2)若|$\overrightarrow{a}$-$\overrightarrow$|=2,θ∈(0,$\frac{π}{2}$),求sinθ+2cosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示,四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為a的菱形,∠DAB=60°,PA=PB=PD=a.
(I)求證:PB⊥BC;
(Ⅱ)求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.己知關(guān)于x的方程x2-px+1=0的兩個(gè)根是x1,x2,且|x1-x2|=3,求實(shí)數(shù)p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在等比數(shù)列{an}中,a5=1,數(shù)列{anan+2}是以5為公比的等比數(shù)列,則log5a2013=1004.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知點(diǎn)O(0,0),A(a,0),B(0,a),a是正常數(shù),點(diǎn)P在直線AB上,且$\overrightarrow{AP}$=t•$\overrightarrow{AB}$(0≤t≤1),求$\overrightarrow{OA}•\overrightarrow{OP}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={x|x=sin$\frac{nπ}{6}$,n∈z},則該集合中所有元素之和為( 。
A.-3-$\sqrt{3}$B.0C.$\frac{3+\sqrt{3}}{2}$D.3+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在如圖所示的程序框圖中,輸入A=22,B=4,則輸出的結(jié)果是( 。
A.0B.2C.4D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案