分析 設(shè)出P的坐標,利用兩點間距離公式以及拋物線方程,通過二次函數(shù)的最值求解即可.
解答 解:設(shè)P(x,y),x≥0
拋物線y2=2x上的點P到定點($\frac{2}{3}$,0)距離為:$\sqrt{{(x-\frac{2}{3})}^{2}+{y}^{2}}$=$\sqrt{{(x-\frac{2}{3})}^{2}+2x}$=$\sqrt{{x}^{2}+\frac{2}{3}x+\frac{4}{9}}$=$\sqrt{{(x+\frac{1}{3})}^{2}+\frac{1}{3}}$
因為x≥0,所以由二次函數(shù)的最值可得:x=0上,物線y2=2x上的點P(0,0)到定點($\frac{2}{3}$,0)距離的最小值為$\frac{2}{3}$,
此時P(0,0).
點評 本題考查拋物線的解得性質(zhì)的應(yīng)用,二次函數(shù)的最值的求法,考查計算能力.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{AB}$+$\overrightarrow{BD}$=$\overrightarrow{AD}$ | B. | $\overrightarrow{AD}$+$\overrightarrow{DC}$=$\overrightarrow{AC}$ | C. | $\overrightarrow{CA}$+$\overrightarrow{AD}$=$\overrightarrow{DC}$ | D. | $\overrightarrow{DB}$+$\overrightarrow{AD}$=$\overrightarrow{AB}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,+∞) | B. | (-1,2) | C. | (-∞,-2)∪(2,+∞) | D. | (-∞,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{π}{12}$,$\frac{π}{2}$] | B. | [$\frac{π}{6}$,$\frac{π}{3}$] | C. | [$\frac{π}{12}$,$\frac{π}{3}$] | D. | ($\frac{π}{6}$,$\frac{π}{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (4,2) | B. | (-4,2) | C. | (4,2)或(-4,2) | D. | (2,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com