20.已知函數(shù)f(x)為偶函數(shù),且在[0,+∞)上為增函數(shù),若f(a2-a+1)>f(2a+1),求實(shí)數(shù)a的取值范圍.

分析 根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系,不等式等價(jià)為f(|a2-a+1|)<f(2a+1),利用單調(diào)性解不等式即可.

解答 解:由題意,f(|a2-a+1|)<f(2a+1),
∵函數(shù)f(x)在[0,+∞)上為增函數(shù),
∴$|{a^2}-a+1|>|2a+1|⇒\left\{{\begin{array}{l}{2a+1≥0}\\{{a^2}-a+1>2a+1}\end{array}}\right.$或$\left\{{\begin{array}{l}{2a+1<0}\\{{a^2}-a+1>-2a-1}\end{array}}\right.$

解得$-\frac{1}{2}≤a<0$或a<0或$a<-\frac{1}{2}$,則a<0.

點(diǎn)評(píng) 本題主要考查不等式的求解,根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系,將不等式進(jìn)行等轉(zhuǎn)化是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若圓錐的側(cè)面面積與過軸的截面面積之比為2π,則其半徑與母線的比為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.為了解2015-2016學(xué)年高一學(xué)生的體能情況,某校隨機(jī)抽取部分學(xué)生進(jìn)行一分鐘跳繩次數(shù)測(cè)試,將所得數(shù)據(jù)整理后,畫出了頻率直方圖.如圖所示,已知次數(shù)在[100,110)間的頻數(shù)為7,次數(shù)在110以下(不含110)視為不達(dá)標(biāo),次數(shù)在[110,130)視為達(dá)標(biāo),次數(shù)在130以上視為有優(yōu)秀.
(I)求此次抽樣的樣本總數(shù)為多少人?
(II)在優(yōu)秀的樣本中,隨機(jī)抽取二人調(diào)查,則抽到的二人一分鐘跳繩次數(shù)都在[140,150)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.采用系統(tǒng)抽樣方法,從我校初中全體900名學(xué)生中抽50名做健康檢查.現(xiàn)將900名學(xué)生從1到900進(jìn)行編號(hào),在1~18中隨機(jī)抽取一個(gè)數(shù),如果抽到的是7,則從37~54這18個(gè)數(shù)中應(yīng)取的數(shù)是( 。
A.44B.43C.42D.41

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.二次函數(shù)f(x)的最小值為1,且f(0)=f(4)=3.
(1)求f(x)的解析式;   
(2)若f(x)在區(qū)間[2a,3a+1]上單調(diào),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.對(duì)任意兩個(gè)非零的平面向量$\overrightarrow α$和$\overrightarrow β$,定義$\overrightarrow α$°$\overrightarrow β$=$\frac{\overrightarrow α•\overrightarrow β}{\overrightarrow β•\overrightarrow β}$,若平面向量$\overrightarrow α$和$\overrightarrow β$滿足|$\overrightarrow a$|≥|$\overrightarrow b$|>0,$\overrightarrow a$與$\overrightarrow b$的夾角θ∈(0,$\frac{π}{3}$),且$\overrightarrow a$°$\overrightarrow b$和$\overrightarrow b$°$\overrightarrow a$都在集合{$\frac{n}{2}$|n∈Z}中,則$\overrightarrow a$°$\overrightarrow b$=1或$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,PA⊥矩形ABCD所在的平面,M,N分別是PC,AB的中點(diǎn),且PA=AB=2AD=4.
(1)求證:MN⊥CD;
(2)求四面體A-BMD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.命題“已知a,x為實(shí)數(shù),若關(guān)于x的不等式x2+(2a+1)x+a2+2≤0”的解集不是空集,則“a≥1”的逆否命題是真命題.(填“真”或“假”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知圓心為C的圓經(jīng)過點(diǎn)A(1,1)和B(2,-2),且圓心C在直線l:x-y+1=0上,則圓心為C的圓的面積是( 。
A.B.13πC.17πD.25π

查看答案和解析>>

同步練習(xí)冊(cè)答案