5.已知圓心為C的圓經(jīng)過點A(1,1)和B(2,-2),且圓心C在直線l:x-y+1=0上,則圓心為C的圓的面積是( 。
A.B.13πC.17πD.25π

分析 根據(jù)題意設(shè)出圓的標(biāo)準(zhǔn)方程,代入點的坐標(biāo),和圓心位置,解方程組求出半徑,即可求出圓的面積.

解答 解:設(shè)圓的方程為(x-a)2+(x-b)2=r2
則$\left\{\begin{array}{l}{(1-a)^{2}+(1-b)^{2}={r}^{2}}\\{(2-a)^{2}+(-2-b)^{2}={r}^{2}}\\{a-b+1=0}\end{array}\right.$
解得:a=-3,b=-2,r=5
∴圓心為C的圓的面積是25π,
故選D.

點評 本題主要考查待定系數(shù)法求圓的標(biāo)準(zhǔn)方程.會解方程組是本題的關(guān)鍵.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)為偶函數(shù),且在[0,+∞)上為增函數(shù),若f(a2-a+1)>f(2a+1),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.集合A={x|x2-ax+a2-19=0},B={2,3},C={x|x2+2x-8=0}滿足A∩B≠∅,A∩C=∅,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={直線|直線l的方程是(3m+1)x+(1-m)y-2-2m=0},集合B={直線|直線l是y=x3的切線},則A∩B=( 。
A.{(x,y)|3x-y-2=0}B.{(1,1)}C.{(x,y)|3x-4y+1=0}D.{(x,y)|x-y=0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列給出的賦值語句中正確的是( 。
A.4=MB.M=-MC.B=A=3D.X=Y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知f(x)=$\frac{|x|}{{e}^{x}}$(x∈R),若關(guān)于x的方程f2(x)-kf(x)+k-1=0恰好有4個不相等的實數(shù)根,則實數(shù)k的取值范圍為$({1,1+\frac{1}{e}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.定義運算$|{\begin{array}{l}a&b\\ c&d\end{array}}|=ad-bc$,設(shè)函數(shù)$y=f(x)=|{\begin{array}{l}{sinx}&{\sqrt{3}}\\{cosx}&1\end{array}}|$,將函數(shù)y=f(x)向左平移m(m>0)個單位長度后,所得到圖象關(guān)于y軸對稱,則m的最小值是$\frac{5π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.某單位有工程師6人,技術(shù)員12人,技工18人,要從這些人中抽取一個容量為n的樣本.如果采用系統(tǒng)抽樣法和分層抽樣法抽取,不用剔除個體;如果樣本容量增加一個,則在采用系統(tǒng)抽樣時,需要在總體中先剔除1個個體.則樣本容量n=6,其中工程師晏某被抽中的概率為$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=mx2+(m-3)x+1
(1)若f(x)為偶函數(shù),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若f(x)的圖象與x軸的交點至少有一個在原點右側(cè),求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案