【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直角坐標(biāo)系中動(dòng)點(diǎn),參數(shù),在以原點(diǎn)為極點(diǎn)、軸正半軸為極軸所建立的極坐標(biāo)系中,動(dòng)點(diǎn)在曲線 上.

(1)求點(diǎn)的軌跡的普通方程和曲線的直角坐標(biāo)方程;

(2)若動(dòng)點(diǎn)的軌跡和曲線有兩個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍.

【答案】(1) (2)

【解析】試題分析:(1)設(shè)點(diǎn)P的坐標(biāo)為(x,y),消去參數(shù)α,得能求出點(diǎn)P的軌跡E的方程;由, ,能求出曲線C的方程

(2)由已知得直線與圓相交,圓心(1,0)到直線ax﹣y+a=0,(a≠0)的距離小于半徑1,由此能求出實(shí)數(shù)a的取值范圍.

試題解析:

(1)設(shè)點(diǎn)的坐標(biāo)為,則有

消去參數(shù),可得,為點(diǎn)的軌跡的方程;

由曲線 ,得,且,

故曲線的方程為: ;

(2)曲線的方程為: ,即

表示過(guò)點(diǎn),斜率為的直線,動(dòng)點(diǎn)的軌跡是以為圓心, 為半徑的圓

由軌跡和曲線有兩個(gè)公共點(diǎn),結(jié)合圖形可得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年5月14日,第一屆“一帶一路”國(guó)際高峰論壇在北京舉行,為了解不同年齡的人對(duì)“一帶一路”關(guān)注程度,某機(jī)構(gòu)隨機(jī)抽取了年齡在歲之間的100人進(jìn)行調(diào)查,并按年齡繪制成頻率分布直方圖,如圖所示,其分組區(qū)間為: , ,,,,.把年齡落在區(qū)間內(nèi)的人分別稱為“青少年”和“中老年”.

(1)根據(jù)頻率分布直方圖求樣本的中位數(shù)(保留兩位小數(shù))和眾數(shù)

(2)根據(jù)已知條件完成下面的2×2列聯(lián)表,并判斷能否有99%的把握認(rèn)為關(guān)注“帶一路”是否和年齡段有關(guān)?

關(guān)注

不關(guān)注

合計(jì)

青少年

15

中老年

合計(jì)

50

50

100

附:參考公式,其中

臨界值表:

/td>

0.05

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市在2017年五一正式開(kāi)業(yè),開(kāi)業(yè)期間舉行開(kāi)業(yè)大酬賓活動(dòng),規(guī)定:一次購(gòu)買總額在區(qū)間內(nèi)者可以參與一次抽獎(jiǎng)根據(jù)統(tǒng)計(jì)發(fā)現(xiàn)參與一次抽獎(jiǎng)的顧客每次購(gòu)買金額分布情況如下

1求參與一次抽獎(jiǎng)的顧客購(gòu)買金額的平均數(shù)與中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表,結(jié)果保留到整數(shù));

2若根據(jù)超市的經(jīng)營(yíng)規(guī)律,購(gòu)買金額與平均利潤(rùn)有以下四組數(shù)據(jù)

試根據(jù)所給數(shù)據(jù)建立關(guān)于的線性回歸方程,并根據(jù)1)中計(jì)算的結(jié)果估計(jì)超市對(duì)每位顧客所得的利潤(rùn).

參考公式 , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知長(zhǎng)方體,直線與平面所成角為垂直于點(diǎn)的中點(diǎn).

(1)求直線與平面所成角的正弦值;

(2)線段上是否存在點(diǎn),使得二面角的余弦值為?若存在,確定點(diǎn)位置;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),曲線在點(diǎn)處的切線方程為.

(1)求, 的值;

(2)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程是為參數(shù)),以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)寫出曲線的普通方程和直線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn),直線與曲線相交于兩點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓: 的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,且過(guò)點(diǎn).過(guò)點(diǎn)的直線交橢圓, 兩點(diǎn), 為橢圓的左頂點(diǎn).

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)求面積的最大值,并求此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 過(guò)點(diǎn),且離心率為.過(guò)點(diǎn)的直線與橢圓交于, 兩點(diǎn).

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)若點(diǎn)為橢圓的右頂點(diǎn),探究: 是否為定值,若是,求出該定值,若不是,請(qǐng)說(shuō)明理由.(其中, , 分別是直線、的斜率)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P-ABCD中, PA⊥平面ABCDEBD的中點(diǎn),GPD的中點(diǎn),△DAB≌△DCB,EA=EB=AB=1 ,連接CE并延長(zhǎng)交ADF

Ⅰ)求證:ADCG

Ⅱ)求平面BCP與平面DCP的夾角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案