已知等差數(shù)列{an}的公差d>0,前n項和為Sn,且滿足前三項的和為9,前三項的積為15.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)數(shù)列{bn}滿足bn=
1
Sn+n
,求數(shù)列{bn}的前n項和Tn
考點:數(shù)列的求和,等差數(shù)列的性質(zhì)
專題:計算題,空間位置關(guān)系與距離
分析:(Ⅰ)利用等差數(shù)列滿足前三項的和為9,前三項的積為15,建立方程組,即可求數(shù)列{an}的通項公式;
(Ⅱ)確定數(shù)列{bn}的通項,利用裂項法求數(shù)列{bn}的前n項和Tn
解答: 解:(I)由題意得
a1+a2+a3=9
a1a2a3=15
,∴
3a1+3d=9
a1(a1+d)(a1+2d)=15
,…(2分)
解得a2=3,d=2,d=-2(舍),…(4分)
∴an=3+2(n-2)=2n-1.…(6分)
(II)Sn=
n(1+2n-1)
2
=n2,…(8分)
∴bn=
1
Sn+n
=
1
n
-
1
n+1
,…(10分)
∴Tn=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
=1-
1
n+1
=
n
n+1
.…(12分)
點評:本題考查等差數(shù)列的通項,考查數(shù)列的求和,確定數(shù)列的通項是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

點P(2,1)為圓
 x=1+5cosθ
y=5sinθ
的弦的中點,則該弦所在的直線方程是( 。
A、x+y-3=0
B、x+2y=0
C、x+y-1=0
D、2x-y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某中學(xué)對高三年級進(jìn)行身高統(tǒng)計,測量隨機抽取的40名學(xué)生的身高,其結(jié)果如下(單位:cm)
分組[140,145)[145,150)[150,155)[155,160)[160,165)[165,170)[170,175)[175,180)合計
人數(shù)12591363140
(1)列出頻率分布表;
(2)畫出頻率分布直方圖;
(3)估計數(shù)據(jù)落在[150,170]范圍內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種產(chǎn)品按質(zhì)量標(biāo)準(zhǔn)分成五個等級,等級編號x依次為1,2,3,4,5,現(xiàn)從一批產(chǎn)品中隨機抽取20件,對其等級編號進(jìn)行統(tǒng)計分析,得到頻率分布表如下:
x12345
頻率a0.30.35bc
(1)若所抽取的20件產(chǎn)品中,等級編號為4的恰有2件,等級編輯為5的恰有4件,求a,b,c的值.
(2)在(1)的條件下,將等級編輯為4的2件產(chǎn)品記為x1、x2,等級編輯為5的4件產(chǎn)品記為y1,y2,y3,y4,現(xiàn)從x1、x2,y1,y2,y3,y4,這6件產(chǎn)品中任取兩件(假定每件產(chǎn)品被取出的可能性相同),寫出所有可能的結(jié)果,并求這兩件產(chǎn)品的等級編號恰好相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2ax+3,x∈(-4,4).
(1)當(dāng)a=-1時,求函數(shù)f(x)的最大值和最小值;
(2)求實數(shù)a的取值范圍.使得y=f(x)在區(qū)間(-4,4)上是單調(diào)函數(shù);
(3)若函數(shù)y=f(x)在(-4,4)上有兩個零點,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知t∈R,設(shè)函數(shù)f(x)=x3-
3(t+1)
2
x2+3tx+1.
(Ⅰ)若f(x)在(0,2)上無極值,求t的值;
(Ⅱ)若存在x0∈(0,2),使得f(x0)是f(x)在[0,2]上的最值,求t的取值范圍;
(Ⅲ)當(dāng)t=1時,若f(x)≤xex-5x2+5x-m+2(e為自然對數(shù)的底數(shù))對任意x∈[0,+∞)恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的一個焦點為F(1,0),且過點(
2
,
6
2
).
(1)求橢圓C的方程;
(2)已知A,B為橢圓上不同的兩點,且直線AB垂直于x軸,直線l:x=4與x軸交于點N,直線AF與BN交于點M,求點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-2x+4,數(shù)列{an}是公差為d的等差數(shù)列,若a1=f(d-1),a3=f(d+1)
(1)求數(shù)列{an}的通項公式;
(2)sn為{an}的前n項和,求和:
1
s1
+
1
s2
+
1
s3
+…+
1
sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在長方體ABCD-A1B1C1D1 中,AB=2,AA1=AD=1,點E、F、G分別是棱AA1、C1D1與BC的中點,那么四面體B1-EFG的體積是
 

查看答案和解析>>

同步練習(xí)冊答案