【題目】已知函數(shù)f(x)= ,則函數(shù)g(x)=f(f(x))﹣2在區(qū)間(﹣1,3]上的零點個數(shù)是( 。
A.1
B.2
C.3
D.4

【答案】C
【解析】解:∵函數(shù)f(x)= ,

∴當(dāng)﹣1<x≤1時, <f(x)≤2,

當(dāng)1<x≤3時,﹣1<x﹣2≤1,f(x)=f(x﹣2)+1=2x﹣2+1∈( ,3];

設(shè)h(x)=f(f(x)),

當(dāng)﹣1<x≤0時,h(x)= , <h(x)≤2,

∴g(x)=h(x)﹣2有一個零點x=0;

當(dāng)0<x≤1時,h(x)= , <h(x)≤2,

∴g(x)=h(x)﹣2有一個零點x=1;

當(dāng)1<x≤3時,h(x)= +1

+1<h(x)≤3g(x)有一個零點;

綜上,函數(shù)g(x)在區(qū)間(﹣1,3]上有3個零點.

所以答案是:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若實數(shù)x,y滿足的約束條件 ,將一顆骰子投擲兩次得到的點數(shù)分別為a,b,則函數(shù)z=2ax+by在點(2,﹣1)處取得最大值的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=cos(2x+ )的圖象沿x軸向右平移φ(φ>0)個單位,得到一個偶函數(shù)的圖象,則φ的一個可能取值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(cosα,﹣1), =(2,sinα),其中 ,且
(1)求cos2α的值;
(2)若sin(α﹣β)= ,且 ,求角β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:根據(jù)兩角和與差的正弦公式,有: sin(α+β)=sinαcosβ+cosαsinβ﹣﹣﹣﹣﹣﹣①
sin(α﹣β)=sinαcosβ﹣cosαsinβ﹣﹣﹣﹣﹣﹣②
由①+②得sin(α+β)+sin(α﹣β)=2sinαcosβ﹣﹣﹣﹣﹣﹣③
令α+β=A,α﹣β=β 有α= ,β= 代入③得 sinA+sinB=2sin cos
(1)利用上述結(jié)論,試求sin15°+sin75°的值;
(2)類比上述推證方法,根據(jù)兩角和與差的余弦公式,證明:cosA﹣cosB=﹣2sin cos

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正四面體ABCD的頂點C在平面α內(nèi),且直線BC與平面α所成角為15°,頂點B在平面α上的射影為點O,當(dāng)頂點A與點O的距離最大時,直線CD與平面α所成角的正弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)的圖象與 的圖象的對稱軸相同,則f(x)的一個遞增區(qū)間為( 。
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,橢圓C1 的左、右焦點分別為F1 , F2 , 其中F2也是拋物線C2:y2=4x的焦點,點P為C1與C2在第一象限的交點,且
(Ⅰ)求橢圓的方程;
(Ⅱ)過F2且與坐標(biāo)軸不垂直的直線交橢圓于M、N兩點,若線段OF2上存在定點T(t,0)使得以TM、TN為鄰邊的四邊形是菱形,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一塊以點O為圓心,半徑為2百米的圓形草坪,草坪內(nèi)距離O點 百米的D點有一用于灌溉的水籠頭,現(xiàn)準(zhǔn)備過點D修一條筆直小路交草坪圓周于A,B兩點,為了方便居民散步,同時修建小路OA,OB,其中小路的寬度忽略不計.

(1)若要使修建的小路的費用最省,試求小路的最短長度;
(2)若要在△ABO區(qū)域內(nèi)(含邊界)規(guī)劃出一塊圓形的場地用于老年人跳廣場舞,試求這塊圓形廣場的最大面積.(結(jié)果保留根號和π)

查看答案和解析>>

同步練習(xí)冊答案