14.如圖△ABC是等腰三角形,BA=BC,DC⊥平面ABC,AE∥DC,若AC=2且BE⊥AD,則(  )
A.AB+BC有最大值B.AB+BC有最小值C.AE+DC有最大值D.AE+DC有最小值

分析 取AC的中點(diǎn)O,連接OB,OE,則OB⊥AC,證明AD⊥平面BOE,確定$\frac{1}{AE}$=$\frac{CD}{2}$,利用基本不等式,即可得出結(jié)論.

解答 解:取AC的中點(diǎn)O,連接OB,OE,則OB⊥AC,
∵DC⊥平面ABC,∴DC⊥OB,
∵DC∩AC=C,
∴OB⊥平面ADC,
∴OB⊥AD,
∵BE⊥AD,OB∩BE=B,
∴AD⊥平面BOE,
∴AD⊥OE,
∴∠AEO=∠CAD,
∴$\frac{1}{AE}$=$\frac{CD}{2}$,
∴AE=$\frac{2}{CD}$,
∴AE+CD=CD+$\frac{2}{CD}$≥2$\sqrt{2}$,當(dāng)且僅當(dāng)CD=$\sqrt{2}$時(shí),AE+DC有最小值,
故選D.

點(diǎn)評 本題考查線面垂直的證明,考查基本不等式的運(yùn)用,確定AE,CD的關(guān)系是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.定義在R上的奇函數(shù)f(x),當(dāng)x>0時(shí),f(x)=-x2+2x-3.
當(dāng)x∈[2,4]時(shí),求f(x)的值域;
當(dāng)f(m)=6時(shí),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.某工廠生產(chǎn)甲、乙、丙3類產(chǎn)品共600件.已知甲、乙、丙3類產(chǎn)品數(shù)量之比為1:2:3.現(xiàn)要用分層抽樣的方法從中抽取120件進(jìn)行質(zhì)量檢測,則甲類產(chǎn)品抽取的件數(shù)為20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)常數(shù)a>0,若9x+$\frac{a^2}{4x}$≥a2-4對一切正實(shí)數(shù)x成立,則a的取值范圍是( 。
A.[-1,4]B.[-4,1]C.(0,1]D.(0,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.直線x+y-3=0的傾斜角是(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知點(diǎn)P(2,-1).
(Ⅰ)求過P點(diǎn)且與原點(diǎn)距離為2的直線l的方程;
(Ⅱ)求過P點(diǎn)且與兩坐標(biāo)軸截距相等的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=mx-1,g(x)=-1+logmx(m>0,m≠1),有如下兩個(gè)命題:
p:f(x)的定義域和g[f(x)]的值域相等.
q:g(x)的定義域和f[g(x)]的值域相等.
則( 。
A.命題p,q都正確B.命題p正確,命題q不正確
C.命題p,q都不正確D.命題q不正確,命題p正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)函數(shù)f(x)=ln(2+x)+ln(2-x),則f(x)是( 。
A.奇函數(shù),且在(0,2)上是增函數(shù)B.奇函數(shù),且在(0,2)上是減函數(shù)
C.偶函數(shù),且在(0,2)上是增函數(shù)D.偶函數(shù),且在(0,2)上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知方程x2-2mx+4=0的兩個(gè)實(shí)數(shù)根均大于1,則實(shí)數(shù)m的范圍是$[2,\frac{5}{2})$.

查看答案和解析>>

同步練習(xí)冊答案