4.分別過橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)左右焦點F1,F(xiàn)2的動直線l1,l2交于P點,與橢圓E分別交于A、B與C、D不同四點,直線OA、OB、OC、OD的斜率分別為k1、k2、k3、k4,且滿足k1+k2=k3+k4,已知當(dāng)l1與x軸重合時,|AB|=2$\sqrt{3}$,|CD|=$\frac{4\sqrt{3}}{3}$.
(1)求橢圓E的方程;
(2)設(shè)點E1,E2的坐標(biāo)分別為(-1,0),(1,0),證明|PE1|+|PE2|為定值.

分析 (1)當(dāng)l1與x軸重合時,可得k1+k2=k3+k4=0,可得l2垂直于x軸,可得|AB|,|CD|的長,解方程可得a,b,進而得到橢圓方程;
(2)當(dāng)直線l1或l2斜率不存在時,P點坐標(biāo)為(-1,0)或(1,0).當(dāng)直線l1、l2斜率存在時,設(shè)斜率分別為m1,m2.可得l1的方程為y=m1(x+1),l2的方程為y=m2(x-1).設(shè)A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),與橢圓方程聯(lián)立即可得出根與系數(shù)的關(guān)系,再利用斜率計算公式和已知即可得出m1與m2的關(guān)系,進而得出答案.

解答 解:(1)當(dāng)l1與x軸重合時,k1+k2=k3+k4=0,即k3=-k4,
即有l(wèi)2垂直于x軸,可得|AB|=2a=2$\sqrt{3}$,|CD|=$\frac{2^{2}}{a}$=$\frac{4\sqrt{3}}{3}$,
解得a=$\sqrt{3}$,b=$\sqrt{2}$,
可得橢圓的方程為$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{2}$=1;
(2)證明:當(dāng)直線l1或l2斜率不存在時,P點坐標(biāo)為(-1,0)或(1,0).
當(dāng)直線l1、l2斜率存在時,設(shè)斜率分別為m1,m2
∴l(xiāng)1的方程為y=m1(x+1),l2的方程為y=m2(x-1).
設(shè)A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),
聯(lián)立 $\left\{\begin{array}{l}{y={m}_{1}(x+1)}\\{2{x}^{2}+3{y}^{2}=6}\end{array}\right.$,得到(2+3m12)x2+6 m12x+3m12-6=0,
∴x1+x2=-$\frac{6{{m}_{1}}^{2}}{2+3{{m}_{1}}^{2}}$,x1x2=$\frac{3{{m}_{1}}^{2}-6}{2+3{{m}_{1}}^{2}}$.
同理x3+x4=$\frac{6{{m}_{2}}^{2}}{2+3{{m}_{2}}^{2}}$,x3x4=$\frac{3{{m}_{2}}^{2}-6}{2+3{{m}_{2}}^{2}}$.(*)
∵k1=$\frac{{y}_{1}}{{x}_{1}}$=$\frac{{m}_{1}({x}_{1}+1)}{{x}_{1}}$=m1+$\frac{{m}_{1}}{{x}_{1}}$,k2=m1+$\frac{{m}_{1}}{{x}_{2}}$,
k3=m2-$\frac{{m}_{2}}{{x}_{3}}$,k4=m2-$\frac{{m}_{2}}{{x}_{4}}$.
又滿足k1+k2=k3+k4
∴2m1+m1•$\frac{{x}_{1}+{x}_{2}}{{x}_{1}{x}_{2}}$=2m2-m2•$\frac{{x}_{3}+{x}_{4}}{{x}_{3}{x}_{4}}$,
把(*)代入上式化為:2m1+m1•$\frac{-2{{m}_{1}}^{2}}{{{m}_{1}}^{2}-2}$=2m2-m2•$\frac{2{{m}_{2}}^{2}}{{{m}_{2}}^{2}-2}$.(m1≠m2).
化為m1m2=-2.
設(shè)點P(x,y),則$\frac{y}{x+1}$•$\frac{y}{x-1}$=-2,(x≠±1)
化為$\frac{{y}^{2}}{2}$+x2=1.
由當(dāng)直線l1或l2斜率不存在時,P點坐標(biāo)為(-1,0)或(1,0)也滿足,
∴點P在橢圓上,則存在點E1,E2的坐標(biāo)分別為(-1,0),(1,0),
|PE1|+|PE2|=2 $\sqrt{2}$為定值.

點評 熟練掌握橢圓的定義、標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交問題轉(zhuǎn)化為方程聯(lián)立可得出根與系數(shù)的關(guān)系、斜率計算公式等是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在多面體ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC為等邊三角形,AE=1,BD=2,CD與平面ABCDE所成角的正弦值為$\frac{{\sqrt{6}}}{4}$.
(1)若F是線段CD的中點,證明:EF⊥平面DBC;
(2)求二面角D-EC-B的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.以A(-2,-2),B(-3,1),C(3,5),D(7,-7)為頂點的四邊形是( 。
A.正方形B.矩形C.平行四邊形D.梯形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若不等式|x+$\frac{1}{x}$|>|a|+1對于一切非零實數(shù)x恒成立,則實數(shù)a的取值范圍是(-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)函數(shù)f(x)=$\frac{1}{3}$x3+x2-3x,若方程|f(x)|2+t|f(x)|+1=0有12個不同的根,則實數(shù)t的取值范圍為( 。
A.(-$\frac{10}{3}$,-2)B.(-∞,-2)C.-$\frac{34}{15}$<t<-2D.(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知x>0,y>0,且$\frac{2}{x}$+$\frac{1}{y}$=1,若x+2y≥a恒成立,則實數(shù)a的最大值為(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,三棱錐P-ABC中,PA⊥底面ABC,∠ACB=90°,PA=BC=AC,E為PC的中點,點F在PB上,且PF=$\frac{1}{3}$PB.
(1)求證:平面AEF⊥平面PBC;
(2)求直線AB和平面AEF所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知x≥2,當(dāng)且僅當(dāng)x=2時,x+$\frac{4}{x}$取得最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.等差數(shù)列{an}的各項均為正數(shù),a1=3,前n項和為Sn,{bn}為等比數(shù)列,b1=1,且b2S2=24,b3S3=135.
(1)求an與bn;
(2)求$\frac{1}{S_1}$+$\frac{1}{S_2}$+…+$\frac{1}{S_n}$.

查看答案和解析>>

同步練習(xí)冊答案