4.函數(shù)f(x)=ax(0<a<1)在[1,2]中的最大值比最小值大$\frac{a}{2}$,則a的值為$\frac{1}{2}$.

分析 函數(shù)f(x)=ax(0<a<1)在[1,2]內(nèi)是減函數(shù),由此利用函數(shù)f(x)=ax(0<a<1)在[1,2]中的最大值比最小值大$\frac{a}{2}$,能求出a的值.

解答 解:∵函數(shù)f(x)=ax(0<a<1),
∴函數(shù)f(x)=ax(0<a<1)在[1,2]內(nèi)是減函數(shù),
∵函數(shù)f(x)=ax(0<a<1)在[1,2]中的最大值比最小值大$\frac{a}{2}$,
∴f(1)-f(2)=a-a2=$\frac{a}{2}$,
解得a=$\frac{1}{2}$,或a=0(舍).
故答案為:$\frac{1}{2}$.

點評 本題考查實數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意指數(shù)函數(shù)的單調(diào)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如果cos(π+A)=-$\frac{1}{2}$,那么sin(3π+A)的值是( 。
A.$±\frac{1}{2}$B.$±\frac{{\sqrt{3}}}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.解關(guān)于x的不等式a3x2-(a2+a)x+1>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知P={y|y=cosθ,θ∈R},Q={x|x2+(1-$\sqrt{2}$)x-$\sqrt{2}$=0},則P∩Q=(  )
A.B.{0}C.{-1}D.$\{-1,\sqrt{2}\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列函數(shù)中,在區(qū)間(0,+∞)上為增函數(shù)的是( 。
A.y=log2xB.$y=-\sqrt{x}$C.$y={(\frac{1}{2})^x}$D.$y=\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知f(x)是定義在R上的偶函數(shù),且當(dāng)x≥0時,f(x+2)=f(x),若f(x)滿足:
①x∈[0,2)時,f(x)=a-|x-b|,
②f(x)是定義在R上的周期函數(shù),
③存在m使得f(x+m)=-f(m-x)
則a+b的值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖A、B是單位圓O上的動點,C是圓與x軸正半軸的交點,設(shè)∠AOC=α.
(1)當(dāng)點A的坐標(biāo)為($\frac{3}{5}$,$\frac{4}{5}$)時,求sinα的值;
(2)若0≤α≤$\frac{π}{2}$,且當(dāng)點A、B在圓上沿逆時針方向移動時總有∠AOB=$\frac{π}{2}$,試求|BC|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在△ABC中,$\sqrt{3}$(tanB+tanC)=tanBtanC-1,則sin2A=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)y=2x-2+3的圖象是由函數(shù)y=2x的圖象按向量$\overrightarrow{a}$平移而得到的,又$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow$=(  )
A.(-2,-3)B.(-3,2)C.(-2,3)D.(3,2)

查看答案和解析>>

同步練習(xí)冊答案