14.如果cos(π+A)=-$\frac{1}{2}$,那么sin(3π+A)的值是( 。
A.$±\frac{1}{2}$B.$±\frac{{\sqrt{3}}}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

分析 根據(jù)題意結(jié)合誘導(dǎo)公式先對條件進(jìn)行化簡,然后對所求化簡,進(jìn)而可以得到答案.

解答 解:∵由題意可得:cos(π+A)=-$\frac{1}{2}$,根據(jù)誘導(dǎo)公式可得cosA=$\frac{1}{2}$,
∴sinA=$±\sqrt{1-co{s}^{2}A}$=±$\frac{\sqrt{3}}{2}$,
∴sin(3π+A)=-sinA=±$\frac{\sqrt{3}}{2}$.
故選:B.

點(diǎn)評 解決此類問題的關(guān)鍵是熟練記憶誘導(dǎo)公式,以及進(jìn)行正確的化簡求值,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知定義在R上的函數(shù)f(x)關(guān)于點(diǎn)(2,0)對稱,且對任意的實(shí)數(shù)x都滿足f(x)=f(2-x),若f(-5)=-2,則f(2015)=( 。
A.-2B.2C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.(1)如圖是一容量為100的樣本的重量的頻率分布直方圖,則由圖可估計樣本重量的中位數(shù)為12.5;
(2)在回歸分析中,代表了數(shù)據(jù)點(diǎn)和它在回歸直線上相應(yīng)位置的差異的是殘差平方和;
(3)如果根據(jù)性別與是否愛好運(yùn)動的列聯(lián)表得到K2≈3.852,所以判斷性別與運(yùn)動有關(guān),那么這種判斷犯錯的可能性不超過5%;
 P(K2≥k) 0.100 0.050 0.010
 k 2.706 3.841 6.635
(4)設(shè)有一個回歸方程為$\widehat{y}$=3-5x,則變量x增加一個單位時y平均減少5個單位;
(5)兩個變量x與y的回歸模型中分別選擇了4個不同模型,它們的相關(guān)指數(shù)R2如下,模型1的相關(guān)指數(shù)R2為0.98,模型2的相關(guān)指數(shù)R2為0.80,模型3的相關(guān)指數(shù)R2為0.50,模型4的相關(guān)指數(shù)R2為0.25.其中擬合效果最好的模型是模型4.其中正確命題的序號為(1)(2)(3)(4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=$\frac{3}{{a}^{x}+1}$+sinx-2,其中a>0且a≠1,若f(2)=5,則f(-2)=( 。
A.-6B.-5C.-3D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知在($\root{3}{x}$-$\frac{1}{2\root{3}{x}}$)n的展開式中,第6項為常數(shù)項.
(1)求展開式中各項系數(shù)的和;
(2)求C${\;}_{2}^{2}$+C${\;}_{3}^{2}$+C${\;}_{4}^{2}$+…+C${\;}_{n}^{2}$的值;
(3)求展開式中系數(shù)絕對值最大的項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若x>0,則函數(shù)y=x+$\frac{1}{x}$+$\frac{16x}{{x}^{2}+1}$的最小值為( 。
A.16B.8C.10D.沒有最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=cos(2x+$\frac{π}{3}$),則下列說法正確的是( 。
A.函數(shù)f(x)=cos(2x+$\frac{π}{3}$)的圖象向右平移$\frac{π}{3}$個單位長度可得到y(tǒng)=sin2x的圖象
B.x=$\frac{π}{6}$是函數(shù)f(x)的一個對稱軸
C.($\frac{π}{12}$,0)是函數(shù)f(x)的一個對稱中心
D.函數(shù)f(x)=cos(2x+$\frac{π}{3}$)在[0,$\frac{π}{2}$]上的最小值為-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$═1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,x軸被曲線C2:y=x2-b截得的線段長等于C1的長半軸長.C2與y軸的交點(diǎn)為M,過坐標(biāo)原點(diǎn)O的直線l與C2相交于點(diǎn)A,B,兩直線MA,MB分別與C1相交于點(diǎn)D,E.
①曲線C1,C2的方程分別為$\frac{{x}^{2}}{4}$+y2=1,y=x2-1;
②MD⊥ME;
③記△MAB,△MDE的面積分別為S1,S2,則$\frac{{S}_{1}}{{S}_{2}}$的最大值為$\frac{25}{64}$;
④記△MAB,△MDE的面積分別為S1,S2,當(dāng)$\frac{{S}_{1}}{{S}_{2}}$=$\frac{17}{32}$時,直線l的方程為:y=$\frac{3}{2}$x或y=-$\frac{3}{2}$x.
以上列說法正確的有(  )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)f(x)=ax(0<a<1)在[1,2]中的最大值比最小值大$\frac{a}{2}$,則a的值為$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案