定義:[x](x∈R)表示不超過x的最大整數(shù).例如[1.5]=1,[-0.5]=-1.給出下列結(jié)論:
①函數(shù)y=[sinx]是奇函數(shù);
②函數(shù)y=[sinx]是周期為2π的周期函數(shù);
③函數(shù)y=[sinx]-cosx不存在零點;
④函數(shù)y=[sinx]+[cosx]的值域是{-2,-1,0,1}.
其中正確的是
 
.(填上所有正確命題的編號)
考點:命題的真假判斷與應用
專題:綜合題,新定義,推理和證明
分析:利用新定義,對4個命題分別進行判斷,即可得出結(jié)論.
解答: 解:①函數(shù)y=[sinx]是非奇非偶函數(shù);
②函數(shù)y=[sinx]的周期與y=sinx的周期相同,故是周期為2π的周期函數(shù);
③函數(shù)y=[sinx]的取值是-1,0,1,故y=[sinx]-cosx不存在零點;
④函數(shù)數(shù)y=[sinx]、y=[cosx]的取值是-1,0,1,故y=[sinx]+[cosx]的值域是{-2,-1,0,1}.
故答案為:②③④.
點評:本題考查命題的真假判斷,考查新定義,正確理解新定義是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,|
PA
|=|
BC
|=a且
PA
=
1
2
PQ
,向
PQ
BC
的夾角θ取何值,
CP
BQ
的值最大?并求出這個最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個幾何體的三視圖如圖所示,且其側(cè)視圖是一個等邊三角形,求這個幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}的首項a1=1,數(shù)列{bn}為等比數(shù)列且bn=
an+1
an
,若b10b11=2015 
1
10
,則a21=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖:M(xM,yM),N(xN,yN)分別是函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的圖象與兩條直線l1:y=m,l2:y=-m(A≥m≥0)的兩個交點,記S=|xN-xM|,則S(m)圖象大致是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)上頂點為A,右頂點為B,離心率e=
2
2
,O為坐標原點,圓O:x2+y2=
2
3
與直線AB相切.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)直線l:y=k(x-2)(k≠0)與橢圓C相交于E、F兩不同點,若橢圓C上一點P滿足OP∥l.求△EPF面積的最大值及此時的k2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某單位為了了解辦公樓用電量y(度)與氣溫x(℃)之間的關(guān)系,隨機統(tǒng)計了四個工作量與當天平均氣溫,并制作了對照表:
 氣溫(℃) 1813  10-1 
 用電量(度) 24 3438  64
由表中數(shù)據(jù)得到線性回歸方程
y
=-2x+a,當氣溫為-4℃時,預測用電量均為( 。
A、68度B、52度
C、12度D、28度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求證:
sina-cosa+1
sina+cosa-1
=
cosa
1-sina

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=4cosωx•sin(ωx+
π
6
)+a(ω>0)圖象上最高點的縱坐標為2,且圖象上相鄰兩個最高點的距離為π.
(Ⅰ)求a和ω的值;
(Ⅱ)求函數(shù)f(x)在[0,π]上的單調(diào)遞減區(qū)間.

查看答案和解析>>

同步練習冊答案