分析 (1)求出圓的圓心,代入直線方程,求出直線的斜率,即可求直線l的方程;
(2)當弦AB被點P平分時,弦AB最短,求出直線的斜率,即可寫出直線l的方程;
(3)當直線l的傾斜角為45°時,求出直線的斜率,然后求出直線的方程,利用點到直線的距離,半徑,半弦長的關(guān)系求弦AB的長.
解答 解:(1)已知圓C:(x-1)2+y2=9的圓心為C(1,0),
因為直線l過點P,C,所以直線l的斜率為2,所以直線l的方程為y=2(x-1),即2x-y-2=0.
(2)當弦AB被點P平分時,弦AB最短,此時l⊥PC,直線l的方程為y-2=-$\frac{1}{2}$(x-2),即x+2y-6=0.
(3)當直線l的傾斜角為45°時,斜率為1,直線l的方程為y-2=x-2,即x-y=0.
圓心到直線l的距離為$\frac{1}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,圓的半徑為3,弦AB的長為:2$\sqrt{9-\frac{1}{2}}$=$\sqrt{34}$.
點評 本題是基礎(chǔ)題,考查直線與圓的位置關(guān)系,計算直線的斜率,點到直線的距離;直線與圓的特殊位置關(guān)系的應(yīng)用是本題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | c<b<a | B. | a<b<c | C. | c<a<b | D. | b<a<c |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4-$\sqrt{2}$ | B. | 16-$\sqrt{2}$ | C. | 16+$\sqrt{2}$ | D. | 4+$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | $2\sqrt{2}$ | D. | $\frac{{\sqrt{2}}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com