14.已知圓C:(x-1)2+y2=9內(nèi)有一點P(2,2),過點P作直線l交圓C于A、B兩點.
(1)當l經(jīng)過圓心C時,求直線l的方程;
(2)當弦AB最短時,寫出直線l的方程;
(3)當直線l的傾斜角為45°時,求弦AB的長.

分析 (1)求出圓的圓心,代入直線方程,求出直線的斜率,即可求直線l的方程;
(2)當弦AB被點P平分時,弦AB最短,求出直線的斜率,即可寫出直線l的方程;
(3)當直線l的傾斜角為45°時,求出直線的斜率,然后求出直線的方程,利用點到直線的距離,半徑,半弦長的關(guān)系求弦AB的長.

解答 解:(1)已知圓C:(x-1)2+y2=9的圓心為C(1,0),
因為直線l過點P,C,所以直線l的斜率為2,所以直線l的方程為y=2(x-1),即2x-y-2=0.
(2)當弦AB被點P平分時,弦AB最短,此時l⊥PC,直線l的方程為y-2=-$\frac{1}{2}$(x-2),即x+2y-6=0.
(3)當直線l的傾斜角為45°時,斜率為1,直線l的方程為y-2=x-2,即x-y=0.
圓心到直線l的距離為$\frac{1}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,圓的半徑為3,弦AB的長為:2$\sqrt{9-\frac{1}{2}}$=$\sqrt{34}$.

點評 本題是基礎(chǔ)題,考查直線與圓的位置關(guān)系,計算直線的斜率,點到直線的距離;直線與圓的特殊位置關(guān)系的應(yīng)用是本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

4.若不等式ax2+(a-5)x-2>0的解集為{x|-2<x<-$\frac{1}{4}$}
(1)解不等式2x2+(2-a)x-a>0
(2)求b為的范圍,使-ax2+bx+3≥0 的解集為R.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知tanα=4$\sqrt{3}$,cos(β-α)=$\frac{13}{14}$,且0<β<α<$\frac{π}{2}$
(1)求cosα的值;
(2)求β的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.(1)已知直線l1:2x+(m+1)y+4=0與直線l2:mx+3y-2=0平行,求m的值;
(2)已知直線l1:(a+2)x+(1-a)y-1=0與直線l2:(a-1)x+(2a+3)y+2=0互相垂直,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.若曲線y=lnx的一條切線是直線y=$\frac{1}{3}$x+b,則實數(shù)b的值為-1+ln3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知函數(shù)f(x)=3x+x,g(x)=log3x+x,h(x)=log3x-3的零點依次為a,b,c,則( 。
A.c<b<aB.a<b<cC.c<a<bD.b<a<c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.圓x2+y2=16上的點到直線x-y=2的距離的最大值是( 。
A.4-$\sqrt{2}$B.16-$\sqrt{2}$C.16+$\sqrt{2}$D.4+$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設(shè)f(x)是定義在R上的增函數(shù),且對任意x,都有f(-x)+f(x)=0恒成立,如果實數(shù)x,y滿足不等式f(x2-6x)+f(y2-4y+12)≤0,那么$\frac{y-2}{x}$的最大值是( 。
A.1B.2C.$2\sqrt{2}$D.$\frac{{\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.“方程$\frac{x^2}{2-n}$+$\frac{y^2}{n+1}$=1表示焦點在x軸的橢圓”是“-1<n<2”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案