【題目】對于任意實(shí)數(shù),定義設(shè)函數(shù),則函數(shù)的最大值是________.

【答案】1

【解析】

分別作出函數(shù)f(x)=﹣3+xg(x)=log2x的圖象,結(jié)合函數(shù)f(x)=﹣3+xg(x)=log2x的圖象可知,在這兩個(gè)函數(shù)的交點(diǎn)處函數(shù)h(x)=min{f(x),g(x)}的最大值.

∵x>0,∴f(x)=﹣x+3<3,g(x)=log2x∈R,分別作出函數(shù)f(x)=﹣3+xg(x)=log2x

的圖象,結(jié)合函數(shù)f(x)=﹣3+xg(x)=log2x的圖象可知,

h(x)=min{f(x),g(x)}的圖象,

在這兩個(gè)函數(shù)的交點(diǎn)處函數(shù)h(x)=min{f(x),g(x)}的最大值.

解方程組 ,

∴函數(shù)h(x)=min{f(x),g(x)}的最大值是1.

故答案為:1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有下面四個(gè)命題①底面是正多邊形,其余各面都是等腰三角形的棱錐是正棱錐.②底面是正三角形,相鄰兩側(cè)面所成二面角都相等的三棱錐是正三棱錐.③有兩個(gè)面互相平行,其余四個(gè)面都是全等的等腰梯形的六面體是正四棱臺(tái).④有兩個(gè)面互相平行,其余各個(gè)面是平行四邊形的多面體是棱柱.其中,正確的命題的個(gè)數(shù)是( )

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E:,若橢圓上一點(diǎn)與其中心及長軸一個(gè)端點(diǎn)構(gòu)成等腰直角三角形.

Ⅰ)求橢圓E的離心率;

Ⅱ)如圖,若直線l與橢圓相交于ABAB是圓的一條直徑,求橢圓E的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在R上的偶函數(shù),且在區(qū)間(﹣∞,0]上單調(diào)遞增,若實(shí)數(shù)a滿足f(log2|a﹣1|)>f(﹣2),則a的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),定義f1(x)=f(x),fn+1(x)=f[fn(x)](n∈N*),已知偶函數(shù)g(x)的定義域?yàn)椋ī仭蓿?)∪(0,+∞),g(1)=0,當(dāng)x>0且x≠1時(shí),g(x)=f2018(x).

(1)求f2(x),f3(x),f4(x),f2018(x);

(2)求出函數(shù)y=g(x)的解析式;

(3)若存在實(shí)數(shù)a、b(a<b),使得函數(shù)g(x)在[a,b]上的值域?yàn)閇mb,ma],求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足:,其中為實(shí)數(shù),為正整數(shù).

(1)對任意實(shí)數(shù),證明數(shù)列不是等比數(shù)列;

(2)對于給定的實(shí)數(shù),試求數(shù)列的前項(xiàng)和;

(3)設(shè),是否存在實(shí)數(shù),使得對任意正整數(shù),都有成立?若存在,求的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率,且橢圓的短軸長為2.

(1)球橢圓的標(biāo)準(zhǔn)方程;

(2)已知直線過右焦點(diǎn),且它們的斜率乘積為,設(shè)分別與橢圓交于點(diǎn).

①求的值;

②設(shè)的中點(diǎn),的中點(diǎn)為,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,過點(diǎn)的直線與橢圓交于兩點(diǎn),延長交橢圓于點(diǎn)的周長為8.

(1)求的離心率及方程;

(2)試問:是否存在定點(diǎn),使得為定值?若存在,求;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,過拋物線)上一點(diǎn),作兩條直線分別交拋物線于點(diǎn),若的斜率滿足.

(1)證明:直線的斜率為定值,并求出該定值;

(2)若直線軸上的截距,求面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案