4.[B]在幾何中可以類比平面幾何的結(jié)論推理空間幾何的結(jié)論,如平面內(nèi)的三點(diǎn)共線類比空間中的四點(diǎn)共面.
(1)已知點(diǎn)A,B,C是平面內(nèi)三點(diǎn),若存在實(shí)數(shù)λ,使得$\overrightarrow{AB}$=$λ\overrightarrow{AC}$成立,則點(diǎn)A,B,C共線.類比上述結(jié)論,寫出空間中四點(diǎn)共面的結(jié)論;
(2)已知(1)結(jié)論的逆命題正確,請利用其解決以下問題:已知點(diǎn)A,B,C,D是空間中共面的四點(diǎn),|$\overrightarrow{AB}$|=2,|$\overrightarrow{AC}$|=1,∠BAC=90°,AD是△ABC的高,試用$\overrightarrow{AB}$、$\overrightarrow{AC}$表示$\overrightarrow{AD}$.

分析 (1)類比平面幾何的結(jié)論推理空間幾何的結(jié)論,即可得出結(jié)論;
(2)設(shè)$\overrightarrow{AD}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$(λ>0,μ>0),利用$\overrightarrow{AD}•\overrightarrow{BC}$=0,得出μ=4λ,利用等面積,求出λ,μ的值,即可用$\overrightarrow{AB}$、$\overrightarrow{AC}$表示$\overrightarrow{AD}$.

解答 解:(1)已知點(diǎn)A,B,C,D是空間中四點(diǎn),若存在實(shí)數(shù)λ,μ,使得$\overrightarrow{AD}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$成立,則點(diǎn)A,B,C,D共面;
(2)設(shè)$\overrightarrow{AD}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$(λ>0,μ>0),
∵AD是△ABC的高,
∴AD⊥BC,
∴$\overrightarrow{AD}•\overrightarrow{BC}$=(λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$)•($\overrightarrow{AC}$-$\overrightarrow{AB}$)=-λ${\overrightarrow{AB}}^{2}$+μ${\overrightarrow{AC}}^{2}$=-4λ+μ=0,
∴μ=4λ.
∵S△ABC=$\frac{1}{2}|AB||AC|$=$\frac{1}{2}|BC||AD|$,
∴|AD|=$\frac{|AB||AC|}{|BC|}$=$\frac{2\sqrt{5}}{5}$,
∴|$\overrightarrow{AD}$|2=(λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$)2=4λ22=20λ2=$\frac{4}{5}$,
∴λ=$\frac{1}{5}$或λ=-$\frac{1}{5}$(舍去)
∴μ=$\frac{4}{5}$,
∴$\overrightarrow{AD}$=$\frac{1}{5}$$\overrightarrow{AB}$+$\frac{4}{5}$$\overrightarrow{AC}$.

點(diǎn)評(píng) 本題主要考查類比推理.類比推理是指依據(jù)兩類數(shù)學(xué)對(duì)象的相似性,將已知的一類數(shù)學(xué)對(duì)象的性質(zhì)類比遷移到另一類數(shù)學(xué)對(duì)象上去.一般步驟:①找出兩類事物之間的相似性或者一致性.②用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個(gè)明確的命題(或猜想).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.三階行列式$|{\begin{array}{l}1&{-3}&5\\ 4&0&0\\{-1}&2&1\end{array}}|$中,元素5的代數(shù)余子式的值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(1)已知向量$\overrightarrow a$,$\overrightarrow b$滿足$|{\overrightarrow a}|$=$|{\overrightarrow b}|$=3,且$\overrightarrow a$與$\overrightarrow b$的夾角為120°,求$|{\overrightarrow a+\overrightarrow b}|$,$|{2\overrightarrow a-\overrightarrow b}|$;
(2)已知非零向量$\overrightarrow a$,$\overrightarrow b$滿足$\overrightarrow a+3\overrightarrow b$與$7\overrightarrow a-5\overrightarrow b$互相垂直,$\overrightarrow a-4\overrightarrow b$與$\overrightarrow{7a}-2\overrightarrow b$互相垂直,求$\overrightarrow a$與$\overrightarrow b$的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在半徑為1的球面上有不共面的四個(gè)點(diǎn)A,B,C,D且AB=CD=x,BC=DA=y,CA=BD=z,則x2+y2+z2等于(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=x(lnx-ax)(a∈R),g(x)=f′(x).
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線3x-y-1=0平行,求實(shí)數(shù)a的值;
(2)若函數(shù)F(x)=g(x)+$\frac{1}{2}$x2有兩個(gè)極值點(diǎn)x1,x2,且x1<x2,求證:f(x2)-1<f(x1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{x^2}{1-x}$(x≠1),數(shù)列{an}滿足a1=m(m≠1),an+1=f(an).
(Ⅰ)當(dāng)m=-1時(shí),寫出數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)是否存在實(shí)數(shù)m,使得數(shù)列{an}是等比數(shù)列?若存在,求出所有符合要求的m的值;若不存在,請說明理由;
(Ⅲ)當(dāng)0<m<$\frac{1}{2}$時(shí),求證:$\underset{\stackrel{n}{π}}{i=1}$(ai+1+ai)<$\frac{1}{2m}$.
(其中π是求乘積符號(hào),如$\underset{\stackrel{5}{π}}{i=1}$i=1×2×3×4×5,$\underset{\stackrel{n}{π}}{i=1}$ai=a1×a2×…×an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.對(duì)于非零實(shí)數(shù)a,b,c,以下四個(gè)命題都成立:
①(a+b)2=a2+2a•b+b2;  
②若a•b=a•c,則b=c;
③(a+b)•c=a•c+b•c;      
④(a•b)•c=a•(b•c);
那么類比于此,對(duì)于非零向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,相應(yīng)命題仍然成立的所有序號(hào)是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=alnx+$\frac{1}{2}b{x^2}$+x,(a,b∈R)
(Ⅰ)若函數(shù)f(x)在x1=1,x2=2處取得極值,求a,b的值,并說明分別取得的是極大值還是極小值;
(Ⅱ)若函數(shù)f(x)在(1,f(1))處的切線的斜率為1,存在x∈[1,e],使得f(x)-x≤(a+2)(-$\frac{1}{2}$x2+x)成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ) 若h(x)+x=f(x)+(1-$\frac{2}$)x2,求h(x)在[1,e]上的最小值及相應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù) f(x)=$\left\{\begin{array}{l}{-x+6,x≤2}\\{3+lo{g}_{a}x,x>2}\end{array}\right.$(a>0且a≠1)
(1)若a=2,解不等式f(x)≤5;
(2)若函數(shù)f(x)的值域是[4,+∞),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案