分析 (1)類比平面幾何的結(jié)論推理空間幾何的結(jié)論,即可得出結(jié)論;
(2)設(shè)$\overrightarrow{AD}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$(λ>0,μ>0),利用$\overrightarrow{AD}•\overrightarrow{BC}$=0,得出μ=4λ,利用等面積,求出λ,μ的值,即可用$\overrightarrow{AB}$、$\overrightarrow{AC}$表示$\overrightarrow{AD}$.
解答 解:(1)已知點(diǎn)A,B,C,D是空間中四點(diǎn),若存在實(shí)數(shù)λ,μ,使得$\overrightarrow{AD}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$成立,則點(diǎn)A,B,C,D共面;
(2)設(shè)$\overrightarrow{AD}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$(λ>0,μ>0),
∵AD是△ABC的高,
∴AD⊥BC,
∴$\overrightarrow{AD}•\overrightarrow{BC}$=(λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$)•($\overrightarrow{AC}$-$\overrightarrow{AB}$)=-λ${\overrightarrow{AB}}^{2}$+μ${\overrightarrow{AC}}^{2}$=-4λ+μ=0,
∴μ=4λ.
∵S△ABC=$\frac{1}{2}|AB||AC|$=$\frac{1}{2}|BC||AD|$,
∴|AD|=$\frac{|AB||AC|}{|BC|}$=$\frac{2\sqrt{5}}{5}$,
∴|$\overrightarrow{AD}$|2=(λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$)2=4λ2+μ2=20λ2=$\frac{4}{5}$,
∴λ=$\frac{1}{5}$或λ=-$\frac{1}{5}$(舍去)
∴μ=$\frac{4}{5}$,
∴$\overrightarrow{AD}$=$\frac{1}{5}$$\overrightarrow{AB}$+$\frac{4}{5}$$\overrightarrow{AC}$.
點(diǎn)評(píng) 本題主要考查類比推理.類比推理是指依據(jù)兩類數(shù)學(xué)對(duì)象的相似性,將已知的一類數(shù)學(xué)對(duì)象的性質(zhì)類比遷移到另一類數(shù)學(xué)對(duì)象上去.一般步驟:①找出兩類事物之間的相似性或者一致性.②用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個(gè)明確的命題(或猜想).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 8 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com