3.在平面直角坐標系xOy中,雙曲線M:$\frac{{x}^{2}}{m}$-y2=1與圓N:x2+(y-m)2=1相切,A(-$\sqrt{m+1}$,0),B($\sqrt{m+1}$,0),若圓N上存在一點P滿足|PA|-|PB|=2$\sqrt{m}$,則點P到x軸的距離為( 。
A.m3B.m2C.mD.$\frac{1}{m}$

分析 聯(lián)立方程組,轉(zhuǎn)化為一元二次方程,根據(jù)曲線相切,利用判別式△=0,得到m的關(guān)系,結(jié)合雙曲線的定義進行求解即可.

解答 解:聯(lián)立雙曲線M:$\frac{{x}^{2}}{m}$-y2=1與圓N:x2+(y-m)2=1,消去x得(m+1)y2-2my+m2+m-1=0,
∵雙曲線M:$\frac{{x}^{2}}{m}$-y2=1與圓N:x2+(y-m)2=1相切,
∴判別式△=4m2-4(m+1)(m2+m-1)=0,
∴(m+1)m2=1,
∴m+1=$\frac{1}{{m}^{2}}$,
易知A,B分別為雙曲線的左右焦點,
又|PA|-|PB|=2$\sqrt{m}$,
故由雙曲線的定義知P在雙曲線M上,且P為右切點,
由韋達定理得2yP=$\frac{2m}{m+1}=\frac{2m}{\frac{1}{{m}^{2}}}$=2m3,
∴yP=m3
即點P到x軸的距離為m3,
故選:A

點評 本題主要考查雙曲線的性質(zhì)的應(yīng)用,利用曲線相切,轉(zhuǎn)化為一元二次方程,利用判別式△=0求出m的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{2x}{3x+2}$,數(shù)列{an}滿足a1=1,an+1=f(an).
(1)求數(shù)列{an}的通項公式;
(2)(理)設(shè)bn=anan+1,數(shù)列{bn}的前n項和為Sn,若Sn<$\frac{m-2016}{2}$對一切正整數(shù)n都成立,求最小的正整數(shù)m的值.
(2)(文)設(shè)bn=$\frac{1}{a_n}$×2n,數(shù)列{bn}的前n項和為Sn,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合M={$\frac{π}{2}$,$\frac{π}{3}$,-$\frac{π}{4}}$},N={x|sinx>0},則M∩N為(  )
A.{$\frac{π}{2}$,$\frac{π}{3}$,-$\frac{π}{4}$}B.{$\frac{π}{2}$,$\frac{π}{3}$}C.{$\frac{π}{3}$,-$\frac{π}{4}$}D.{$\frac{π}{2}$,-$\frac{π}{4}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)集合M={a|a=$\right.\frac{x+y}{t}$$\frac{x+y}{t}$,2x+2y=2t,其中x,y,t,a均為整數(shù)},則集合M={0,1,3,4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.命題“?x≥0,使x(x+3)≥0”的否定是?x≥0,x(x+3)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在平面區(qū)域{(x,y)||x|≤2,|y|≤2}上恒有ax+3by≤4,則動點P(a,b)所形成的平面區(qū)域的面積是( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.1D.$\frac{8}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)i是虛數(shù)單位,若復(fù)數(shù)2a+$\frac{5i}{1-2i}$(a∈R)是純虛數(shù),則a=( 。
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)f(x)=log${\;}_{\frac{1}{3}}$(2-x)的定義域為(-∞,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若對于任意實數(shù)x,都有x4=a0+a1(x+2)+a2(x+2)2+a3(x+2)3+a4(x+2)4,則a0+a1+a2+a3+a4的值為1.

查看答案和解析>>

同步練習(xí)冊答案