12.函數(shù)f(x)=log${\;}_{\frac{1}{3}}$(2-x)的定義域為(-∞,2).

分析 根據(jù)對數(shù)函數(shù)的真數(shù)大于0,列出不等式求出解集即可.

解答 解:∵函數(shù)f(x)=log${\;}_{\frac{1}{3}}$(2-x),
∴2-x>0,
解得x<2,
∴f(x)的定義域為(-∞,2).
故答案為:(-∞,2).

點評 本題考查了求對數(shù)函數(shù)的定義域的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)f(x)=ax-|lnx|+1有三個不同的零點,則a的取值范圍是(  )
A.(0,e)B.(0,e2C.(0,$\frac{1}{e}$)D.(0,$\frac{1}{{e}^{2}}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在平面直角坐標(biāo)系xOy中,雙曲線M:$\frac{{x}^{2}}{m}$-y2=1與圓N:x2+(y-m)2=1相切,A(-$\sqrt{m+1}$,0),B($\sqrt{m+1}$,0),若圓N上存在一點P滿足|PA|-|PB|=2$\sqrt{m}$,則點P到x軸的距離為( 。
A.m3B.m2C.mD.$\frac{1}{m}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)復(fù)數(shù)z=$\frac{2}{1+i}$+(1-i)2,則z的模為( 。
A.$\sqrt{10}$B.$\sqrt{2}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知{an}是首項為$\frac{1}{2}$的等差數(shù)列,Sn為數(shù)列的前n項和,若S6=2S4,則a7=(  )
A.$\frac{1}{3}$B.$\frac{19}{2}$C.-$\frac{3}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合M={x|x2≥x},N={y|y=3x+1,x∈R},則M∩N=(  )
A.{x|x>1}B.{x|x≥1}C.{x|x≤0或x>1}D.{x|0≤x≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若實數(shù)x,y滿足$\left\{\begin{array}{l}{x+y-3≥0}\\{x-y-3≤0}\\{0≤y≤1}{\;}\end{array}\right.$,則z=2x+y的最大值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.由正實數(shù)組成的數(shù)列{an}滿足:an2≤an-an+1,n=1,2…證明:對任意n∈N*,都有an<$\frac{1}{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)變量x,y滿足約束條件$\left\{{\begin{array}{l}{x>-1}\\{y≤1}\\{x-y+1≤0}\end{array}}\right.$,則(x-2)2+y2的最小值為( 。
A.5B.$\sqrt{5}$C.$\frac{9}{2}$D.$\frac{{3\sqrt{2}}}{2}$

查看答案和解析>>

同步練習(xí)冊答案