8.已知f(x)的定義域為(0,+∞),若對任意x1>0,x2>0,均有f(x1+x2)=f(x1)+f(x2),
且f(8)=3,則f(2)=$\frac{3}{4}$.

分析 由已知得f(8)=f(6)+f(2)=f(4)+2f(2)=f(2)+f(2)+2f(2)=4f(2)=3,由此能求出f(2).

解答 解:∵f(x)的定義域為(0,+∞),
對任意x1>0,x2>0,均有f(x1+x2)=f(x1)+f(x2),
且f(8)=3,
∴f(8)=f(6)+f(2)=f(4)+2f(2)=f(2)+f(2)+2f(2)=4f(2)=3,
∴f(2)=$\frac{3}{4}$.
故答案為:$\frac{3}{4}$.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

18.下列集合中,是空集的是( 。
A.{x|x+2=0}B.{x|x2+1=0,x∈R}C.{x|x<1}D.{(x,y)|y2=-x2,x,y∈R}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知二次函數(shù)f(x)=ax2+bx(a、b是常數(shù),且a≠0)滿足條件:f(2)=0,且方程f(x)=x有兩個相等實根.
(1)求f(x)的解析式并寫出函數(shù)的值域;
(2)比較f(0)、f(1)、f(3)的大小;
(3)若x1<x2<1,比較f(x1)與f(x2)的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.在△ABC中,AB=AC=2,BC=2$\sqrt{3}$,點D在BC上,∠ADC=75°,AD=( 。
A.$\sqrt{6}$B.$\sqrt{6}$-$\sqrt{2}$C.$\sqrt{3}+\sqrt{2}$D.2+$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知$\vec a$,$\vec b$不共線向量,若向量$\overrightarrow{AB}$=2$\vec a$+k$\vec b$,$\overrightarrow{CB}$=$\vec a$+$\vec b$,$\overrightarrow{CD}$=2$\vec a$-$\vec b$,若A,B,D三點共線,則實數(shù)k的值等于-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點分別為F1、F2,過F2作y軸的平行線交橢圓于M、N兩點,若|MN|=3,且$\overrightarrow{{F_1}M}•\overrightarrow{{F_1}N}=\frac{7}{4}$,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.下列各組函數(shù)是同一函數(shù)的是( 。
①f(x)=$\frac{{x}^{2}-1}{x+1}$與g(x)=x-1;   
②f(x)=$\sqrt{x-1}$•$\sqrt{x+1}$與g(x)=$\sqrt{{x}^{2}-1}$;
③f(x)=x0與g(x)=$\frac{1}{{x}^{0}}$;            
④f(x)=x2-2x-1與g(t)=t2-2t-1.
A.①②B.①④C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.證明:若一條直線與兩個相交平面分別平行,則這條直線與兩個平面的交線平行.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知關(guān)于x的不等式組$\left\{\begin{array}{l}{1≤k{x}^{2}+2}\\{x+k≤2}\end{array}\right.$有唯一實數(shù)解,則實數(shù)k的取值集合{$1+\sqrt{2}$,$\frac{1-\sqrt{5}}{2}$}.

查看答案和解析>>

同步練習冊答案