如圖,在中,,點(diǎn)上,以為半徑的于點(diǎn),的垂直平分線交于點(diǎn),交于點(diǎn),連接

(1)判斷直線的位置關(guān)系,并說明理由;

(2)若,,求線段的長.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.將雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1的右焦點(diǎn)、右頂點(diǎn)、虛軸的一個(gè)端點(diǎn)所組成的三角形叫做雙曲線的“黃金三角形”,則雙曲線C:x2-y2=4的“黃金三角形”的面積是( 。
A.$\sqrt{2}$-1B.2$\sqrt{2}$-2C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線與直線x=-1的一個(gè)交點(diǎn)的縱坐標(biāo)為y0,若|y0|<2,則雙曲線C的離心率的取值范圍是(  )
A.(1,$\sqrt{3}$)B.(1,$\sqrt{5}$)C.($\sqrt{3}$,+∞)D.($\sqrt{5}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.計(jì)算:sin65°cos35°-sin25°sin35°=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,M是以A、B為焦點(diǎn)的雙曲線x2-y2=2右支上任一點(diǎn),若點(diǎn)M到點(diǎn)C(3,1)與點(diǎn)B的距離之和為S,則S的取值范圍是( 。
A.[$\sqrt{26}$+$\sqrt{2}$,+∞)B.[$\sqrt{26}$-$2\sqrt{2}$,+∞)C.[$\sqrt{26}$-$2\sqrt{2}$,$\sqrt{26}$+$2\sqrt{2}$)D.[$\sqrt{26}$-$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.三棱錐P-ABC中,D、E分別是三角形PAC和三角形ABC的外心,則下列判斷一定正確的是(  )
A.DE∥PBB.當(dāng)AB=BC且PA=AC時(shí)DE∥PB
C.當(dāng)且僅當(dāng)AB=BC且PA=AC時(shí),DE⊥ACD.DE⊥AC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.雙曲線C的一條漸近線方程是:x-2y=0,且曲線C過點(diǎn)$(2\sqrt{2},1)$.
(1)求雙曲線C的方程;
(2)設(shè)曲線C的左、右頂點(diǎn)分別是A1、A2,P為曲線C上任意一點(diǎn),PA1、PA2分別與直線l:x=1交于M、N,求|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在某校統(tǒng)考中,甲、乙兩班數(shù)學(xué)學(xué)科前10名的成績?nèi)绫恚?br />(I)若已知甲班10位同學(xué)數(shù)學(xué)成績的中位數(shù)為125,乙班10位同學(xué)數(shù)學(xué)成績的平均分為130,求x,y的值;
(Ⅱ)設(shè)定分?jǐn)?shù)在135分之上的學(xué)生為數(shù)學(xué)尖優(yōu)生,從甲、乙兩班的所有數(shù)學(xué)尖優(yōu)生中任兩人,求兩人在同一班的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.若x>0,求函數(shù)y=x+$\frac{4}{x}$的最小值,并求此時(shí)x的值.

查看答案和解析>>

同步練習(xí)冊答案