如圖,已知為平行四邊形,,,,點在上,,,與相交于.現(xiàn)將四邊形沿折起,使點在平面上的射影恰在直線上.
(Ⅰ) 求證:平面;
(Ⅱ) 求折后直線與平面所成角的余弦值.
(1)要證明線面垂直,只要通過線線垂直來判定線面垂直即可。
(2)
解析試題分析:解:(Ⅰ)∵EF⊥DN,EF⊥BN,DN∩BN=N
∴EF⊥面DNB ∵EF?平面BCEF,∴平面BDN⊥平面BCEF,∵BN=平面BDN∩平面BCEF,∴D在平面BCEF上的射影在直線BN上,∵D在平面BCEF上的射影在直線BC上,∴D在平面BCEF上的射影即為點B,∴BD⊥平面BCEF. 6分
(Ⅱ)連接BE,由BD⊥平面BCEF,得∠DEB即為直線DE與平面BCEF所成角.在原圖中,由已知,可得AD=3,BD=3,BN=,DN=2,DE=4 折后,由BD⊥平面BCEF,知BD⊥BN則BD2=DN2-BN2=9,即BD=3則在Rt△DEB中,有BD=3,DE=4,則BE=,故cos∠DEB= 即折后直線DE與平面BCEF所成角的余弦值為 14分
考點:線面垂直,線面角
點評:主要是考查了空間幾何體中線面垂直的證明以及線面角的求解的綜合運用,屬于基礎(chǔ)題。
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱錐A-BCD中,△ABD和△BCD是兩個全等的等腰直角三角形,O為BD的中點,且AB=AD=CB=CD=2,AC=.
(1)當(dāng)時,求證:AO⊥平面BCD;
(2)當(dāng)二面角的大小為時,求二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示的幾何體是由以等邊三角形ABC為底面的棱柱被平面DEF所截面得,已知FA⊥平面ABC,AB=2,BD=1,AF=2, CE=3,O為AB的中點.
(1)求證:OC⊥DF;
(2)求平面DEF與平面ABC相交所成銳二面角的大。
(3)求多面體ABC—FDE的體積V.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐PABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD,PD⊥底面ABCD。
(1)證明:PA⊥BD;(2)設(shè)PD=AD,求二面角A-PB-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱柱ABC-A1B1C1中, CC1⊥底面ABC,AC=BC,M,N分別是CC1,AB的中點.
(1)求證:CN⊥AB1;
(2)求證:CN//平面AB1M.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
一個多面體的直觀圖和三視圖如圖所示,其中,分別是,的中點.
(1)求證:平面;
(2)在線段上(含端點)確定一點,使得∥平面,并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在長方體ABCD—A1B1C1D1中,AD=AA1=1,AB=2,E為AB的中點,F(xiàn)為CC1的中點.
(1)證明:B F//平面E CD1
(2)求二面角D1—EC—D的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com