解:(1)∵
,則
,
當(dāng)0<x<e時,f′(x)>0;當(dāng)x>e時,f′(x)<0.
∴當(dāng)x∈(0,e)時,f(x)為增函數(shù),當(dāng)x∈(e,+∞)時,f(x)為減函數(shù).
(2)由上知,若e<a<b,f(a)>f(b),得:
,
∴blna>alnb,
即lna
b>lnb
a,
∴a
b>b
a;
分析:(1)先確定函數(shù)的定義域然后求導(dǎo)數(shù)fˊ(x),在函數(shù)的定義域內(nèi)解不等式fˊ(x)>0和fˊ(x)<0,導(dǎo)函數(shù)大于0時原函數(shù)單調(diào)遞增,當(dāng)導(dǎo)函數(shù)小于0時原函數(shù)單調(diào)遞減;
(2)根據(jù)第一問的單調(diào)性可知若e<a<b,f(a)>f(b),可得:
,化簡變形,再根據(jù)對數(shù)函數(shù)的單調(diào)性可證得a
b>b
a.
點評:本題主要考查導(dǎo)函數(shù)的正負(fù)與原函數(shù)的單調(diào)性之間的關(guān)系,即當(dāng)導(dǎo)函數(shù)大于0時原函數(shù)單調(diào)遞增,當(dāng)導(dǎo)函數(shù)小于0時原函數(shù)單調(diào)遞減,以及不等式的證明等基礎(chǔ)知識,同時考查了分析與解決問題的綜合能力.