A. | [-$\frac{1}{4}$,$\frac{1}{4}$] | B. | [-$\frac{1}{4}$,$\frac{1}{4}$) | C. | (-∞,-$\frac{1}{4}$]∪[0,$\frac{1}{4}$) | D. | (-∞,-$\frac{1}{4}$]∪[$\frac{1}{4}$,+∞) |
分析 去絕對(duì)值可得x≥0時(shí),y=2x-4;當(dāng)x<0時(shí),y=-2x-4,數(shù)形結(jié)合可得曲線必相交于(±2,0),分別聯(lián)立方程結(jié)合一元二次方程根的分布可得.
解答 解:由2|x|-y-4=0可得y=2|x|-4,
當(dāng)x≥0時(shí),y=2x-4;當(dāng)x<0時(shí),y=-2x-4,
∴函數(shù)y=2|x|-4的圖象與方程x2+λy2=4的曲線必相交于(±2,0)
∴為了使函數(shù)y=2|x|-4的圖象與方程x2+λy2=1的曲線恰好有兩個(gè)不同的公共點(diǎn),
則y=2x-4代入方程x2+λy2=1,整理可得(1+4λ)x2-16λx+16λ-4=0,
當(dāng)λ=-$\frac{1}{4}$時(shí),x=2滿足題意,由于△>0,2是方程的根,∴$\frac{16λ-4}{1+4λ}$<0,
解得-$\frac{1}{4}$<λ<$\frac{1}{4}$時(shí),方程兩根異號(hào),滿足題意;
y=-2x-4代入方程x2+λy2=1,整理可得(1+4λ)x2+16λx+16λ-4=0
當(dāng)λ=-$\frac{1}{4}$時(shí),x=-2滿足題意,由于△>0,-1是方程的根,$\frac{16λ-4}{1+4λ}$<0,
解得-$\frac{1}{4}$<λ<$\frac{1}{4}$時(shí),方程兩根異號(hào),滿足題意;
綜上知,實(shí)數(shù)λ的取值范圍是[-$\frac{1}{4}$,$\frac{1}{4}$)
故選:B.
點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單幾何性質(zhì),考查分類(lèi)討論的數(shù)學(xué)思想和不等式的解法以及數(shù)形結(jié)合,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{3}}{2}$或-$\frac{\sqrt{3}}{2}$ | D. | 0 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com