分析 由圖得,原函數(shù)的極大值點小于0.5.把答案代入驗證看哪個對應(yīng)的極值點符合要求即可得出答案.
解答 解:由圖得,原函數(shù)的極大值點小于0.5.
當(dāng)m=1,n=1時,f(x)=ax(1-x)=-a(x-$\frac{1}{2}$)2+$\frac{a}{4}$.在x=$\frac{1}{2}$處有最值,故①錯誤;
當(dāng)m=1,n=2時,f(x)=axm(1-x)n=ax(1-x)2=a(x3-2x2+x),所以f′(x)=a(3x-1)(x-1),令f′(x)=0⇒x=$\frac{1}{3}$,x=1,即函數(shù)在x=$\frac{1}{3}$處有最值,故②正確;
當(dāng)m=2,n=1時,f(x)=axm(1-x)n=ax2(1-x)=a(x2-x3),有f'(x)=a(2x-3x2)=ax(2-3x),令f′(x)=0⇒x=0,x=$\frac{2}{3}$,即函數(shù)在x=$\frac{2}{3}$處有最值,故③錯誤;
當(dāng)m=3,n=1時,f(x)=axm(1-x)n=ax3(1-x)=a(x3-x4),有f′(x)=ax2(3-4x),令f′(x)=0,⇒x=0,x=$\frac{3}{4}$,即函數(shù)在x=$\frac{3}{4}$處有最值,故④錯誤.
故答案為:②.
點評 本題主要考查函數(shù)的最值(極值)點與導(dǎo)函數(shù)之間的關(guān)系.在利用導(dǎo)函數(shù)來研究函數(shù)的極值時,分三步①求導(dǎo)函數(shù),②求導(dǎo)函數(shù)為0的根,③判斷根左右兩側(cè)的符號,若左正右負(fù),原函數(shù)取極大值;若左負(fù)右正,原函數(shù)取極小值.本本題考查利用極值求對應(yīng)變量的值.可導(dǎo)函數(shù)的極值點一定是導(dǎo)數(shù)為0的點,但導(dǎo)數(shù)為0的點不一定是極值點.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,2,3,4,5,6} | B. | {3,4,6} | C. | {2,3,4,6} | D. | {4,6} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{3}$ | B. | 2$\sqrt{2}$ | C. | 4$\sqrt{3}$ | D. | 4$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∧q | B. | ¬p∧¬q | C. | ¬p∧q | D. | p∧¬q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 重心 垂心 內(nèi)心 | B. | 外心 垂心 重心 | C. | 重心 外心 內(nèi)心 | D. | 外心 重心 內(nèi)心 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com