分析 (1)求出a1,利用n≥2時(shí),an=Sn-Sn-1,求出an,驗(yàn)證n=1時(shí)滿足通項(xiàng)公式,即可求得數(shù)列{an}的通項(xiàng)公式
(2)由(1)判斷哪些項(xiàng)為正,哪些項(xiàng)為負(fù),然后求解Tn.
解答 解:(1)當(dāng)n=1時(shí),a1=S1=12×1-12=11;當(dāng)n≥2時(shí),an=Sn-Sn-1=(12n-n2)-[12(n-1)-(n-1)2]=13-2n.
經(jīng)驗(yàn)證當(dāng)n=1時(shí),a1=11也符合13-2n的形式.
(2)數(shù)列{an}的通項(xiàng)公式為an=13-2n,
∵當(dāng)n≤6時(shí),an>0,當(dāng)n≥7時(shí),an<0,
∴T10=a1+…+a6-a7-a8-a9-a10=2S6-S10=52.
點(diǎn)評(píng) 本題考查數(shù)列前n項(xiàng)和與通項(xiàng)公式的應(yīng)用,考查轉(zhuǎn)化思想與計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 2($\sqrt{3}$-$\sqrt{2}$) | C. | 2$\sqrt{5}$ | D. | 2($\sqrt{3}$+$\sqrt{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com