11.橢圓$\frac{x^2}{4}$+$\frac{y^2}{9}$=1的焦距是( 。
A.2B.2($\sqrt{3}$-$\sqrt{2}$)C.2$\sqrt{5}$D.2($\sqrt{3}$+$\sqrt{2}$)

分析 求得橢圓的a,b,由c=$\sqrt{{a}^{2}-^{2}}$=$\sqrt{5}$,即可得到焦距2c.

解答 解:橢圓$\frac{x^2}{4}$+$\frac{y^2}{9}$=1的a=3,b=2,
可得c=$\sqrt{{a}^{2}-^{2}}$=$\sqrt{5}$,
即有橢圓的焦距為2c=2$\sqrt{5}$,
故選:C.

點(diǎn)評 本題考查橢圓的方程和性質(zhì),主要是橢圓的焦距的求法,注意運(yùn)用橢圓的基本量的關(guān)系,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若f(x)=$\left\{\begin{array}{l}f(x-4),x>0\\{e^x}+\int_1^2{\frac{1}{t}dt,x≤0}\end{array}$,則f(2016)等于1+ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在△ABC中,已知∠BAC=$\frac{π}{3}$,AB=2,AC=3,D在線段BC上.
(Ⅰ)若$\overrightarrow{BD}$=$\overrightarrow{DC}$,$\overrightarrow{AE}$=3$\overrightarrow{ED}$,且$\overrightarrow{BE}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,求x+y;
(Ⅱ)若$\overrightarrow{AD}$•$\overrightarrow{BC}$=0,求|${\overrightarrow{AD}}$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若二項式(x-$\frac{1}{x}$)n的展開式中二項式系數(shù)和為64,那么該展開式中的常數(shù)項為( 。
A.-20B.-30C.15D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.到定點(diǎn)(1,0,0)的距離不大于1的點(diǎn)集合為( 。
A.{(x,y,z)|(x-1)2+y2+z2≤1}B.{(x,y,z)|(x-1)2+y2+z2=1}
C.{(x,y,z)|(x-1)+y+z≤1}D.{(x,y,z)|x2+y2+z2≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}前n項和為Sn=-n2+12n.
(1)求{an}的通項公式;
(2)求數(shù)列{|an|}的前10項和T10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知焦點(diǎn)為F的拋物線y2=2px(p>0)上有一點(diǎn)A(m,2$\sqrt{2}$),以A為圓心,|AF|為半徑的圓被y軸截得的弦長為2$\sqrt{5}$,則m=( 。
A.$\sqrt{2}$B.$2\sqrt{2}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.現(xiàn)有9張不同的卡片,其中紅色、黃色、藍(lán)色卡片各3張,從中任取3張,則取出的這些卡片中紅色卡片至少1張的概率為$\frac{16}{21}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.(1)四面體的一個頂點(diǎn)為A,從其他頂點(diǎn)和各棱中點(diǎn)中取3個點(diǎn),使它們和點(diǎn)A在同一個面上有多少種不同方法?
(2)四面體的頂點(diǎn)和各棱中點(diǎn)共10個點(diǎn),從其中取4個不共面的點(diǎn),有多種不同的取法?

查看答案和解析>>

同步練習(xí)冊答案