6.下列命題中正確的是( 。
A.若p∨q為真命題,則p∧q為真命題
B.“a>0,b>0”是“$\frac{a}+\frac{a}≥2$”的充分必要條件
C.命題“若x2-3x+2=0,則x=1或x=2”的逆否命題為“若x≠1或x≠2,則x2-3x+2≠0”
D.命題p:?x0>0,使得$x_0^2+{x_0}-1<0$,則¬p:?x>0,使得x2+x-1≥0

分析 A,若p∨q為真命題,則p、q至少一個(gè)為真命題,不能確定p∧q為真命題;
B,根據(jù)充分條件和必要條件的定義結(jié)合基本不等式的性質(zhì)進(jìn)行判斷即可;
C,“或”的否定為“且”;
D,命題p:?x0>0,使得$x_0^2+{x_0}-1<0$,則¬p:?x>0,使得x2+x-1≥0;

解答 解:對(duì)于A,若p∨q為真命題,則p、q至少一個(gè)為真命題,不能確定p∧q為真命題,故錯(cuò);
對(duì)于B,若a>0,b>0⇒$\frac{a}>0,\frac{a}>0$⇒$\frac{a}+\frac{a}≥2$,若a<0,b<0,⇒$\frac{a}>0,\frac{a}>0$⇒$\frac{a}+\frac{a}≥2$,故錯(cuò);
對(duì)于C,命題“若x2-3x+2=0,則x=1或x=2”的逆否命題為“若x≠1且x≠2,則x2-3x+2≠0”,故錯(cuò);
對(duì)于D,命題p:?x0>0,使得$x_0^2+{x_0}-1<0$,則¬p:?x>0,使得x2+x-1≥0,正確;
故選:D

點(diǎn)評(píng) 本題考查了命題真假的判定,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.等差數(shù)列{an}中,Sn為其前n項(xiàng)和,已知a3+a6=16,S9-S4=65.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)${b_n}={2^{a_n}}$,求數(shù)列{bn}的前n項(xiàng)和Tn的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知函數(shù)$f(x)=cos[{\frac{π}{2}(1-x)}]$,任意的t∈R,記函數(shù)f(x)在區(qū)間[t,t+1]上的最大值為M(t),最小值為m(t),則函數(shù)h(t)=M(t)-m(t)的值域?yàn)?[{1-\frac{{\sqrt{2}}}{2},\sqrt{2}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.$\int_1^2{(x-2)}dx$的值為( 。
A.-1B.0C.1D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.按如圖所示的程序框圖運(yùn)算:若輸出k=2,則輸入x的取值范圍是(  )
A.(20,25]B.(30,57]C.(30,32]D.(28,57]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.四面體D-ABC中,BA,BC,BD兩兩垂直,且AB=BC=2,二面角D-AC-B的大小為60°,則四面體D-ABC的體積是( 。
A.$\frac{{2\sqrt{3}}}{3}$B.$2\sqrt{3}$C.$\frac{{2\sqrt{6}}}{3}$D.$2\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.橢圓$\frac{x^2}{16}+\frac{y^2}{m}=1$的焦距為$2\sqrt{7}$,則m的值為( 。
A.9B.23C.9或23D.$16-\sqrt{7}或16+\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.如圖:在正方體ABCD-A1B1C1D1中,設(shè)直線A1B與平面A1DCB1所成角為θ1,二面角A1-DC-A的大小為θ2,則θ1,θ2為( 。
A.45o,30oB.30o,45oC.30o,60oD.60o,45o

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,若$\frac{a_7}{a_4}=2$,則$\frac{S13}{S7}$的值為( 。
A.$\frac{13}{14}$B.2C.$\frac{7}{13}$D.$\frac{26}{7}$

查看答案和解析>>

同步練習(xí)冊(cè)答案