A. | $\frac{{2\sqrt{3}}}{3}$ | B. | $2\sqrt{3}$ | C. | $\frac{{2\sqrt{6}}}{3}$ | D. | $2\sqrt{6}$ |
分析 取AC中點E,連結(jié)BE、DE,則∠BED=60°,由此求出BD=$\sqrt{6}$,從而能求出四面體D-ABC的體積.
解答 解:如圖,∵面體D-ABC中,BA,BC,BD兩兩垂直,且AB=BC=2,
∴BD⊥平面ABC,
取AC中點E,連結(jié)BE、DE,則BE⊥AC,∴DE⊥AC,
∴∠BED是二面角D-AC-B的平面角,
∵二面角D-AC-B的大小為60°,∴∠BED=60°,
∴∠BDE=30°,
∵BE=$\frac{1}{2}\sqrt{4+4}$=$\sqrt{2}$,(2BE)2=BE2+BD2,
解得BD=$\sqrt{6}$,
∴四面體D-ABC的體積:
V=$\frac{1}{3}×{S}_{△ABC}×DB$=$\frac{1}{3}×\frac{1}{2}×2×2×\sqrt{6}$=$\frac{2\sqrt{6}}{3}$.
故選:C.
點評 本題考查四面體的體積的求法,是中檔題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若p∨q為真命題,則p∧q為真命題 | |
B. | “a>0,b>0”是“$\frac{a}+\frac{a}≥2$”的充分必要條件 | |
C. | 命題“若x2-3x+2=0,則x=1或x=2”的逆否命題為“若x≠1或x≠2,則x2-3x+2≠0” | |
D. | 命題p:?x0>0,使得$x_0^2+{x_0}-1<0$,則¬p:?x>0,使得x2+x-1≥0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}{a^2}$ | B. | $\frac{4}{9}{a^2}$ | C. | $\frac{1}{4}π{a^2}$ | D. | $\frac{4}{9}π{a^2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com