【題目】已知,函數(shù)

(1)當(dāng)時,求函數(shù)上的最值;

(2)若函數(shù)上單調(diào)遞增,求的取值范圍.

【答案】(1)見解析;(2)a .

【解析】

(1) 當(dāng)a=2時,求得函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)得出函數(shù)的單調(diào)性,即可求解函數(shù)的最值;

(2)根據(jù)函數(shù)f(x)在(-1,1)上單調(diào)遞增,轉(zhuǎn)化為在(-1,1)上恒成立,再利用分離參數(shù),轉(zhuǎn)化為函數(shù)的最值問題,即可求解.

(1) 當(dāng)a=2時,f(x)=(-x2+2x)ex,f′(x)=(-x2+2)ex.

令f′(x)=0,則x=-或x=

當(dāng)x變化時,f′(x),f(x)的變化情況如下表:

x

0

(0, )

(,2)

2

f′(x)

+

0

-

f(x)

f(0)=0

極大值f()

f(2)=0

所以,f(x)max= f()=(-2+2),f(x)min= f(0)=0.

(2)因為函數(shù)f(x)在(-1,1)上單調(diào)遞增,所以f′(x)≥0在(-1,1)上恒成立.

又f′(x)=[-x2+(a-2)x+a]ex,即[-x2+(a-2)x+a]ex≥0,注意到ex>0,

因此-x2+(a-2)x+a≥0在(-1,1)上恒成立,

也就是a≥=x+1-在(-1,1)上恒成立.

設(shè)y=x+1-,則y′=1+>0,

即y=x+1-在(-1,1)上單調(diào)遞增,

則y<1+1-,故a≥.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列的公差不為零,且、、成等比數(shù)列,數(shù)列滿足

1)求數(shù)列、的通項公式;

2)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù),如果存在函數(shù)為常數(shù)),使得對一切實數(shù)都成立,則稱為函數(shù)的一個承托函數(shù).給出如下命題:

① 函數(shù)是函數(shù)的一個承托函數(shù);

② 函數(shù)是函數(shù)的一個承托函數(shù);

③ 若函數(shù)是函數(shù)的一個承托函數(shù),則的取值范圍是;

④ 值域是的函數(shù)不存在承托函數(shù)。 其中,所有正確命題的序號是__

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為,滿足,數(shù)列滿足,,且.

1)求數(shù)列的通項公式;

2)求證:數(shù)列是等差數(shù)列,求數(shù)列的通項公式;

3)若,求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)處取得極值,求的值;

(2)設(shè),試討論函數(shù)的單調(diào)性;

(3)當(dāng)時,若存在正實數(shù)滿足,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為為參數(shù),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為

1求圓C的普通方程和直線l的直角坐標(biāo)方程;

2設(shè)M是直線l上任意一點,過M做圓C切線,切點為A、B,求四邊形AMBC面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)n∈N*,f(n)=3n+7n-2.

(1)求f(1),f(2),f(3)的值;

(2)證明:對任意正整數(shù)n,f(n)是8的倍數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正四棱錐中,底邊,側(cè)棱, 為側(cè)棱上的點.

(1)若平面,求二面角的余弦值的大。

(2)若,側(cè)棱上是否存在一點,使得平面,若存在,求的值;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(Ⅰ)若,解不等式;

(Ⅱ)若不等式至少有一個負(fù)數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案