19.若$\overrightarrow{a}$為非零向量,且$\overrightarrow$=$\frac{\overrightarrow{a}}{|\overrightarrow{a}|}$,$\overrightarrow{c}$=(cosθ,sinθ),則向量$\overrightarrow$與$\overrightarrow{c}$一定滿足( 。
A.$\overrightarrow$∥$\overrightarrow{c}$B.($\overrightarrow$+$\overrightarrow{c}$)⊥($\overrightarrow$-$\overrightarrow{c}$)C.$\overrightarrow$+$\overrightarrow{c}$=$\overrightarrow{a}$D.$\overrightarrow$•$\overrightarrow{c}$=0

分析 由題意可知|$\overrightarrow$|=|$\overrightarrow{c}$|=1,于是($\overrightarrow$+$\overrightarrow{c}$)•($\overrightarrow$-$\overrightarrow{c}$)=${\overrightarrow}^{2}$-${\overrightarrow{c}}^{2}$=0.

解答 解:∵$\overrightarrow$=$\frac{\overrightarrow{a}}{|\overrightarrow{a}|}$.∴$\overrightarrow$為與$\overrightarrow{a}$同向的單位向量,
又∵$\overrightarrow{c}$=(cosθ,sinθ),∴|$\overrightarrow$|=|$\overrightarrow{c}$|=1,
∴($\overrightarrow$+$\overrightarrow{c}$)•($\overrightarrow$-$\overrightarrow{c}$)=${\overrightarrow}^{2}$-${\overrightarrow{c}}^{2}$=1-1=0,
∴($\overrightarrow$+$\overrightarrow{c}$)⊥($\overrightarrow$-$\overrightarrow{c}$).
故選:B.

點評 本題考查了平面向量的數(shù)量積運算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知直線l是曲線C1:y=x2與曲線C2:y=lnx,x∈(0,1)的一條公切線,若直線l與曲線C1的切點為P,則點P的橫坐標(biāo)t滿足(  )
A.0<t<$\frac{1}{2}$B.$\frac{1}{2}$<t<1C.$\frac{\sqrt{2}}{2}$<t<$\sqrt{2}$D.$\sqrt{2}$<t<$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,一次函數(shù)y=ax+b與反比例函數(shù)y=$\frac{k}{x}$(x<0)的圖象交于點A,與x軸、y軸分別交于點B、C,過點A作AD⊥x軸于點D,過點D作DE∥AB,交y軸于點E,已知四邊形ADEC的面積為6.
(1)求k的值;
(2)若AD=3OC,tan∠DAC=2,求點E的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知角α的終邊經(jīng)過一點P(1,4$\sqrt{3}$),cos(α-β)=$\frac{13}{14}$,且0<β<α<$\frac{π}{2}$.
(1)求tanα+tan2α的值;(2)求β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知變量x,y滿足線性約束條件$\left\{\begin{array}{l}{x+y+1≥0}\\{x-y+2≥0}\\{3x+y-2≤0}\end{array}\right.$,若目標(biāo)函數(shù)z=ax-y僅在點(0,2)處取得最小值,則實數(shù)a的取值范圍是(  )
A.(-∞,-3)B.(3,+∞)C.(-3,1)D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知等比數(shù)列{an}中,a3=$\frac{3}{2}$,S3=$\frac{9}{2}$,求a1與q.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合A={y|y=$\sqrt{{x}^{2}-1}$},B={x|x2-1<0},則A∩B=( 。
A.B.{x|0≤x<1}C.{x|x≥0}D.{x|0<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若m>0,n>0,m+n=1,且$\frac{t}{m}+\frac{1}{n}$(t>0)的最小值為9,則t=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知正實數(shù)x,y滿足xy=x+y,若xy≥m-2恒成立,則實數(shù)m的最大值是6.

查看答案和解析>>

同步練習(xí)冊答案