14.已知正實(shí)數(shù)x,y滿足xy=x+y,若xy≥m-2恒成立,則實(shí)數(shù)m的最大值是6.

分析 求出xy的最大值,問題轉(zhuǎn)化為m-2≤4,求出m的最大值即可.

解答 解:由x>0,y>0,xy=x+y≥2$\sqrt{xy}$,
得:xy≥4,
于是由m-2≤xy恒成立,
得:m-2≤4,
解得:m≤6,
故答案為:6.

點(diǎn)評(píng) 本題考查了函數(shù)恒成立問題,考查基本不等式的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若$\overrightarrow{a}$為非零向量,且$\overrightarrow$=$\frac{\overrightarrow{a}}{|\overrightarrow{a}|}$,$\overrightarrow{c}$=(cosθ,sinθ),則向量$\overrightarrow$與$\overrightarrow{c}$一定滿足(  )
A.$\overrightarrow$∥$\overrightarrow{c}$B.($\overrightarrow$+$\overrightarrow{c}$)⊥($\overrightarrow$-$\overrightarrow{c}$)C.$\overrightarrow$+$\overrightarrow{c}$=$\overrightarrow{a}$D.$\overrightarrow$•$\overrightarrow{c}$=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知復(fù)數(shù)${z_1}=\frac{3}{a+2}+({a^2}-3)i$,z2=2+(3a+1)i(a∈R,i是虛數(shù)單位).
(1)若z1∈R,求a的值;
(2)若復(fù)數(shù)z1-z2在復(fù)平面上對(duì)應(yīng)點(diǎn)落在第一象限,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知a是任意實(shí)數(shù),則關(guān)于x的不等式(a2-a+2016)x2<(a2-a+2016)2x+3的解集為( 。
A.(3,+∞)B.(-1,3)C.(-∞,-1)∪(3,+∞)D.與a的取值有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若a>1,b>0,且a+b=2,則$\frac{1}{a-1}$+$\frac{4}$的最小值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.等比數(shù)列{an}的前4項(xiàng)和為5,前12項(xiàng)和為35,則前8項(xiàng)和為( 。
A.-10B.15C.-15D.-10或15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若向量$\overrightarrow a$=(3,m),$\overrightarrow b$=(-2,1),$\overrightarrow a$∥$\overrightarrow b$,則實(shí)數(shù)m的值為( 。
A.$-\frac{3}{2}$B.$\frac{3}{2}$C.-6D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.解不等式0<$\frac{(x-1)^{2}}{x+1}$<1,并求適合此不等式的所有整數(shù)解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知不等式ax2+bx+2<0的解集是(1,2),則a+b的值為-2.

查看答案和解析>>

同步練習(xí)冊(cè)答案