12.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=1-log2x,則不等式f(x)<0的解集是(-2,0)∪(2,+∞).

分析 求出當(dāng)x>0時(shí),f(x)>0和f(x)<0的解集,利用奇函數(shù)的對(duì)稱性得出當(dāng)x<0時(shí),f(x)<0的解集,從而得出f(x)<0的解集.

解答 解:當(dāng)x>0,令f(x)<0,即1-log2x<0,解得x>2.
令f(x)>0即1-log2x>0,解得0<x<2.
∵f(x)是奇函數(shù),
∴當(dāng)x<0時(shí),f(x)<0的解為-2<x<0.
故答案為:(-2,0)∪(2,+∞).

點(diǎn)評(píng) 本題考查了奇函數(shù)的性質(zhì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.一空間幾何體的三視圖如圖所示,該幾何體的體積為12π+$\frac{8\sqrt{5}}{3}$,則正視圖與側(cè)視圖中x的值為( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.甲、乙、丙、丁四人站一排照相,其中甲、乙不相鄰的站法共有n種,則($\root{3}{x}$-$\frac{1}{2x}$)n展開(kāi)式的常數(shù)項(xiàng)為(  )
A.-$\frac{55}{2}$B.$\frac{55}{2}$C.-55D.55

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.某幾何體直觀圖與三視圖如圖所示,AB是⊙O的直徑,PA垂直⊙O的直徑,PA垂直⊙O所在的平面,C為圓周上一點(diǎn).
(1)求證:BC⊥平面PAC;
(2)若三棱錐B-PAC的體積為$\frac{\sqrt{3}}{3}$,求銳二面角C-PB-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.($\frac{2}{\sqrt{x}}$-x)9展開(kāi)式中除常數(shù)項(xiàng)外的其余項(xiàng)的系數(shù)之和為5377.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.平行四邊形ABCD中,AB=$\sqrt{13}$,BC=$\sqrt{5}$,BD=4,AC,BD交于O,將△ABD沿BD折起至△A′BD,使得A′C⊥CB.
(1)求證:A′C⊥平面A′AD;
(2)求二面角A′-BD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)復(fù)數(shù)z滿足$\frac{1+z}{1-z}$=i,則z的虛部為( 。
A.-iB.iC.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知函數(shù)f(x)=ex-ax-1,若x軸為曲線y=f(x)的切線,則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知等差數(shù)列{an}滿足a2=-11,a10=5,求{|an|}的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案