【題目】改革開放以來,人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來,移動支付已成為主要支付方式之一.為了解某校學(xué)生上個月對甲、乙兩種移動支付方式的使用情況,從全校學(xué)生中隨機抽取了100人作為樣本,發(fā)現(xiàn)樣本中甲、乙兩種支付方式都不使用的有10人,樣本中僅使用甲種支付方式和僅使用乙種支付方式的學(xué)生的支付金額分布情況如下:
支付金額(元) 支付方式 | 大于1000 | ||
僅使用甲 | 15人 | 8人 | 2人 |
僅使用乙 | 10人 | 9人 | 1人 |
(1)從全校學(xué)生中隨機抽取1人,估計該學(xué)生上個月甲、乙兩種支付方式都使用的概率;
(2)從樣本中僅使用甲種支付方式和僅使用乙種支付方式的學(xué)生中各隨機抽取1人,以表示這2人中上個月支付金額大于500元的人數(shù),用頻率近似代替概率,求的分布列和數(shù)學(xué)期望
【答案】(1)0.45;(2) 的分布列見解析;數(shù)學(xué)期望為0.9
【解析】
(1)用減去僅使用甲、僅使用乙和兩種都不使用的人數(shù),求得都使用的人數(shù),進而求得所求概率.(2)的所有可能值為0,1,2.根據(jù)相互獨立事件概率計算公式,計算出的分布列,并求得數(shù)學(xué)期望.
解:(1)由題意知,樣本中僅使用甲種支付方式的學(xué)生有人,僅使用乙種支付方式的學(xué)生有人,甲、乙兩種支付方式都不使用的學(xué)生有10人.
故樣本中甲、乙兩種支付方式都使用的學(xué)生有人
所以從全校學(xué)生中隨機抽取1人,
該學(xué)生上個月甲、乙兩種支付方式都使用的概率估計為.
(2)的所有可能值為0,1,2.
記事件為“從樣本僅使用甲種支付方式的學(xué)生中隨機抽取1人,該學(xué)生上個月的支付金額大于500元”,事件為“從樣本僅使用乙種支付方式的學(xué)生中隨機抽取1人,該學(xué)生上個月的支付金額大于500元”。
由題設(shè)知,事件A,B相互獨立,
且
所以
所以的分布列為
0 | 1 | 2 | |
0.3 | 0.5 | 0.2 |
故的數(shù)學(xué)期望
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2016年蘇州B19)已知函數(shù)f(x)=x|x-a|,a∈R,g(x)=x2-1.
(1)當(dāng)a=1時,解不等式f(x)≥g(x);
(2)記函數(shù)f(x)在區(qū)間[0,2]上的最大值為F(a),求F(a)的表達式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合,其中。表示集合A中任意兩個不同元素的和的不同值的個數(shù)。
(1)若,分別求和的值;
(2)若集合,求的值,并說明理由;
(3)集合 中有2019個元素,求的最小值,并說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面是直角梯形,,,,側(cè)面是等腰直角三角形,,平面平面,點分別是棱上的點,平面平面
(Ⅰ)確定點的位置,并說明理由;
(Ⅱ)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究機構(gòu)為了了解各年齡層對高考改革方案的關(guān)注程度,隨機選取了200名年齡在內(nèi)的市民進行了調(diào)查,并將結(jié)果繪制成如圖所示的頻率分布直方圖(分第一~五組區(qū)間分別為,,,,,).
(1)求選取的市民年齡在內(nèi)的人數(shù);
(2)若從第3,4組用分層抽樣的方法選取5名市民進行座談,再從中選取2人在座談會中作重點發(fā)言,求作重點發(fā)言的市民中至少有一人的年齡在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù)若滿足:①對任意、,都有;②對任意,都有,則稱函數(shù)為“中心捺函數(shù)”,其中點稱為函數(shù)的中心.已知函數(shù)是以為中心的“中心捺函數(shù)”,若滿足不等式,當(dāng)時,的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有200人參加了一次會議,為了了解這200人參加會議的體會,將這200人隨機號為001,002,003,…,200,用系統(tǒng)抽樣的方法(等距離)抽出20人,若編號為006,036,041,176, 196的5個人中有1個沒有抽到,則這個編號是( )
A. 006B. 041C. 176D. 196
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務(wù)情況,隨機訪問50名職工,根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為
(1)求頻率分布直方圖中的值;
(2)估計該企業(yè)的職工對該部門評分不低于80的概率;
(3)從評分在的受訪職工中,隨機抽取2人,求此2人評分都在的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com