分析 求出各向量的坐標(biāo),根據(jù)向量垂直得出數(shù)量級為0,列方程解出a.
解答 解:$\overrightarrow{OA}$=(a,0),$\overrightarrow{OB}$=(2,4),$\overrightarrow{AB}$=(2-a,4).
∴2$\overrightarrow{OB}+\overrightarrow{AB}$=(6-a,12),
∵$\overrightarrow{OA}$⊥(2$\overrightarrow{OB}$+$\overrightarrow{AB}$),
∴$\overrightarrow{OA}$•(2$\overrightarrow{OB}$+$\overrightarrow{AB}$)=a(6-a)=0,
∵a≠0,
∴a=6.
點評 本題考查了平面向量的坐標(biāo)運算,向量的數(shù)量級運算,向量垂直與數(shù)量級的關(guān)系,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 15 | B. | 20 | C. | 30 | D. | 42 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | -$\frac{3}{5}$ | C. | -$\frac{4}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2,$\frac{5}{3}$] | B. | [-$\frac{1}{3}$,2] | C. | [-$\frac{1}{3}$,$\frac{5}{3}$] | D. | [-2,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{5}+1}{2}$ | B. | $\sqrt{2}$ | C. | $\frac{\sqrt{3}+1}{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com