8.解方程${(\sqrt{4+2\sqrt{3}})}^{x}$+${(\sqrt{4-2\sqrt{3}})}^{x}$=8.

分析 由已知得($\sqrt{3}+1$)x+($\sqrt{3}-1$)x=8,由此利用($\sqrt{3}+1$)2+($\sqrt{3}-1$)2=8,能求出方程${(\sqrt{4+2\sqrt{3}})}^{x}$+${(\sqrt{4-2\sqrt{3}})}^{x}$=8的解.

解答 解:∵${(\sqrt{4+2\sqrt{3}})}^{x}$+${(\sqrt{4-2\sqrt{3}})}^{x}$=8,
∴($\sqrt{3}+1$)x+($\sqrt{3}-1$)x=8,
∵($\sqrt{3}+1$)2+($\sqrt{3}-1$)2=4+2$\sqrt{3}+4-2\sqrt{3}$=8.
∴x=2.
∴方程${(\sqrt{4+2\sqrt{3}})}^{x}$+${(\sqrt{4-2\sqrt{3}})}^{x}$=8的解為x=2.

點(diǎn)評(píng) 本題考查方程的解法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意根式與分?jǐn)?shù)指數(shù)冪的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{2}t}{2}+1}\\{y=-\frac{\sqrt{2}t}{2}}\end{array}$(t是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,且取相同的長(zhǎng)度單位建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=2$\sqrt{2}$cos(θ+$\frac{π}{4}$).
(1)求直線l的普通方程與圓C的直角坐標(biāo)方程;
(2)設(shè)圓C與直線l交于A、B兩點(diǎn),若P點(diǎn)的直角坐標(biāo)為(1,0),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知f(x)=log2(ax2+(a-1)x+1)的值域?yàn)镽,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知函數(shù)f(x)=ax3+2bx-csinx-8,且f(4)=5,則f(-4)=-21.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè){an}是公比不為1的等比數(shù)列,且a5,a3,a4成等差數(shù)列,求數(shù)列{an}的公比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在直角坐標(biāo)系中,點(diǎn)A(a,0),B(2,4),其中a≠0,已知$\overrightarrow{OA}$⊥(2$\overrightarrow{OB}$+$\overrightarrow{AB}$),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)$\overrightarrow{a}$=(2,-3),$\overrightarrow$=(x,2x),且3$\overrightarrow{a}$•$\overrightarrow$=4,則x等于( 。
A.-3B.3C.-$\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S4≥10,則S5≤45是a4≤22的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若曲線C:mx2+(2-m)y2=1是焦點(diǎn)在x軸上的雙曲線,則m的取值范圍為(2,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案