ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
x | a | $\frac{π}{3}$ | b | $\frac{5π}{6}$ | c |
f(x) | 0 | 5 | d | -5 | 0 |
分析 (I)根據(jù)表中數(shù)據(jù),得出A、T、ω與a、b、c、d的值,再求出φ的值,寫出f(x)的解析式;
(II)根據(jù)圖象平移,寫出函數(shù)y的解析式,再根據(jù)圖象的對(duì)稱中心求出θ的最小正值即可.
解答 解:(I)根據(jù)表中已知數(shù)據(jù),可知A=5,
又$\frac{T}{2}$=$\frac{5π}{6}$-$\frac{π}{3}$=$\frac{π}{2}$,∴T=π,
又$\frac{2π}{ω}$=π,∴ω=2;…(2分)
∴f(x)=5sin(2x+φ);
由圖象的對(duì)稱性可知a=$\frac{π}{12}$,b=$\frac{7π}{12}$,c=$\frac{13π}{12}$,d=0;…(4分)
由f($\frac{π}{3}$)=5sin($\frac{2π}{3}$+φ)=5,得sin($\frac{2π}{3}$+φ)=1,
又|φ|<$\frac{π}{2}$,∴φ=-$\frac{π}{6}$;
∴f(x)=5sin(2x-$\frac{π}{6}$);…(6分)
(II)由(I)知f(x)=5sin(2x-$\frac{π}{6}$),
把y=f(x)圖象上所有點(diǎn)所有點(diǎn)向右平移θ(θ>0)個(gè)單位長(zhǎng)度對(duì)應(yīng)的解析式為
y=5sin[2(x-θ)-$\frac{π}{6}$]=5sin(2x-2θ-$\frac{π}{6}$);…(8分)
又平移后對(duì)應(yīng)圖象關(guān)于點(diǎn)($\frac{5π}{12}$,0)成中心對(duì)稱,
∴sin(2×$\frac{5π}{12}$-2θ-$\frac{π}{6}$)=sin($\frac{2π}{3}$-2θ)=0;…(10分)
解得$\frac{2π}{3}$-2θ=kπ,
∴θ=-$\frac{1}{2}$kπ+$\frac{π}{3}$,k∈Z;…(11分)
∴θ的最小正值為$\frac{π}{3}$.…(12分)
點(diǎn)評(píng) 本題考查了三角函數(shù)f(x)=Asin(ωx+φ)的圖象與性質(zhì)的應(yīng)用問(wèn)題,也考查了圖象平移的應(yīng)用問(wèn)題,是綜合性題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | $\frac{5}{2}$ | C. | 2 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {2} | B. | {4,6} | C. | {1,3,5} | D. | {4,6,7,8} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\frac{2}{5}$ | C. | -$\frac{2}{5}$ | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{2}$ | D. | $\frac{3π}{4}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com