【題目】如圖,在四棱錐中,底面是矩形,側(cè)棱底面,且,過(guò)棱的中點(diǎn),作于點(diǎn).

1)證明:平面;

2)若面與面所成二面角的大小為,求與面所成角的正弦值.

【答案】1)見(jiàn)解析(2

【解析】

1)連接,則的中點(diǎn),連接,證明,平面即得證;(2)如圖以為原點(diǎn),方向分別為軸,軸,軸正半軸建立空間直角坐標(biāo)系.設(shè),根據(jù)面與面所成二面角的大小為求出,再求出與面所成角的正弦值.

1)證明:連接,則的中點(diǎn),連接,

的中位線,所以,

有因?yàn)?/span>

所以平面.

2)如圖以為原點(diǎn),方向分別為軸,軸,軸正半軸建立空間直角坐標(biāo)系.設(shè),則

,,,,

,設(shè),則,

,即,解得

設(shè)是平面的一個(gè)法向量,則

,方程的一組解為 ,

顯然是面的一個(gè)法向量,依題意有

,得

結(jié)合①式得 .

因?yàn)?/span>底面,所以與面所成的角,

所以 .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“團(tuán)購(gòu)”已經(jīng)滲透到我們每個(gè)人的生活,這離不開(kāi)快遞行業(yè)的發(fā)展,下表是2013-2017年全國(guó)快遞業(yè)務(wù)量(x億件:精確到0.1)及其增長(zhǎng)速度(y%)的數(shù)據(jù)

1)試計(jì)算2012年的快遞業(yè)務(wù)量;

2)分別將2013年,2014年,…,2017年記成年的序號(hào)t1,2,3,4,5;現(xiàn)已知yt具有線性相關(guān)關(guān)系,試建立y關(guān)于t的回歸直線方程

3)根據(jù)(2)問(wèn)中所建立的回歸直線方程,估算2019年的快遞業(yè)務(wù)量

附:回歸直線的斜率和截距地最小二乘法估計(jì)公式分別為:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】高三年級(jí)某班50名學(xué)生期中考試數(shù)學(xué)成績(jī)的頻率分布直方圖如圖所示,成績(jī)分組區(qū)間為:.其中ab,c成等差數(shù)列且.物理成績(jī)統(tǒng)計(jì)如表.(說(shuō)明:數(shù)學(xué)滿分150分,物理滿分100分)

分組

頻數(shù)

6

9

20

10

5

1)根據(jù)頻率分布直方圖,請(qǐng)估計(jì)數(shù)學(xué)成績(jī)的平均分;

2)根據(jù)物理成績(jī)統(tǒng)計(jì)表,請(qǐng)估計(jì)物理成績(jī)的中位數(shù);

3)若數(shù)學(xué)成績(jī)不低于140分的為“優(yōu)”,物理成績(jī)不低于90分的為“優(yōu)”,已知本班中至少有一個(gè)“優(yōu)”同學(xué)總數(shù)為6人,從數(shù)學(xué)成績(jī)?yōu)椤皟?yōu)”的同學(xué)中隨機(jī)抽取2人,求兩人恰好均為物理成績(jī)“優(yōu)”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了了解高一年級(jí)學(xué)生學(xué)習(xí)數(shù)學(xué)的狀態(tài),從期中考試成績(jī)中隨機(jī)抽取50名學(xué)生的數(shù)學(xué)成績(jī),按成績(jī)分組:第1,第2,第3,第4,第5,得到的頻率分布直方圖如圖所示.

(1)由頻率分布直方圖,估計(jì)這50名學(xué)生數(shù)學(xué)成績(jī)的中位數(shù)和平均數(shù)(保留到0.01);

(2)該校高一年級(jí)共有1000名學(xué)生,若本次考試成績(jī)90分以上(含90分)為優(yōu)秀等次,則根據(jù)頻率分布直方圖估計(jì)該校高一學(xué)生數(shù)學(xué)成績(jī)達(dá)到優(yōu)秀等次的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的焦點(diǎn)在圓上,且橢圓上一點(diǎn)與兩焦點(diǎn)圍成的三角形周長(zhǎng)為.

1)求橢圓的方程;

2)過(guò)圓上一點(diǎn)作圓的切線交橢圓于兩點(diǎn),證明:點(diǎn)在以為直徑的圓內(nèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行六面體ABCDA1B1C1D1中,AA1A1D,ABBC,∠ABC120°.

1)證明:ADBA1;

2)若平面ADD1A1⊥平面ABCD,且A1DAB,求直線BA1與平面A1B1CD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】北京聯(lián)合張家口獲得2022年第24屆冬奧會(huì)舉辦權(quán),我國(guó)各地掀起了發(fā)展冰雪運(yùn)動(dòng)的熱潮,現(xiàn)對(duì)某高中的學(xué)生對(duì)于冰雪運(yùn)動(dòng)是否感興趣進(jìn)行調(diào)查,該高中男生人數(shù)是女生的1.2倍,按照分層抽樣的方法,從中抽取110人,調(diào)查高中生是否對(duì)冰雪運(yùn)動(dòng)感興趣得到如下列聯(lián)表:

感興趣

不感興趣

合計(jì)

男生

40

女生

30

合計(jì)

110

1)補(bǔ)充完成上述列聯(lián)表;

2)是否有99%的把握認(rèn)為是否喜愛(ài)冰雪運(yùn)動(dòng)與性別有關(guān).

附: (其中.

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面是邊長(zhǎng)為的正方形,平面平面,,的中點(diǎn).

1)求證:平面;

2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)習(xí)小組在生物研究性學(xué)習(xí)中,對(duì)春季晝夜溫差大小與黃豆種子發(fā)芽多少之間的關(guān)系進(jìn)行研究,于是小組成員在3月份的31天中隨機(jī)挑選了5天進(jìn)行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:

日期

32

38

315

322

328

溫差/

10

11

13

12

8

發(fā)芽數(shù)/

23

25

30

26

14

1)在這個(gè)學(xué)習(xí)小組中負(fù)責(zé)統(tǒng)計(jì)數(shù)據(jù)的那位同學(xué)為了減少計(jì)算量,他從這5天中去掉了32日與328日的兩組數(shù)據(jù),請(qǐng)根據(jù)這5天中的另三天的數(shù)據(jù),求出關(guān)于的線性回歸方程;

2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所去掉的試驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(1)中所得的線性回歸方程是否可靠?

(參考公式:)(參考數(shù)據(jù):,

查看答案和解析>>

同步練習(xí)冊(cè)答案