【題目】(本小題滿分12分)

中,內(nèi)角對邊的邊長分別是,已知,

的面積等于,求;

,求的面積.

【答案】,,

【解析】

)由余弦定理及已知條件得,,

又因為的面積等于,所以,得··········································4

聯(lián)立方程組解得,··················································6

)由題意得,

,······························································8

時,,,,,

時,得,由正弦定理得,

聯(lián)立方程組解得,

所以的面積······················································12

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ﹣ax(a∈R).
(1)當a= 時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在[﹣1,1]上為單調(diào)函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等邊三角形,點D在邊BC的延長線上,且BC=2CD,AD=

(1)求CD的長;
(2)求sin∠BAD的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}(n∈N*)是公差不為0的等差數(shù)列,a1=1,且 成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{ }的前n項和為Tn , 求證:Tn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點為為坐標原點,是拋物線上異于的兩點.

(1)求拋物線的方程;

(2)若直線的斜率之積為,求證:直線過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a,b是正奇數(shù),數(shù)列{cn}(n∈N*)定義如下:c1=a,c2=b,對任意n≥3,cn是cn1+cn2的最大奇約數(shù).數(shù)列{cn}中的所有項構(gòu)成集合A.
(1)若a=9,b=15,寫出集合A;
(2)對k≥1,令dk=max{c2k , c2k1}(max{p,q}表示p,q中的較大值),求證:dk+1≤dk;
(3)證明集合A是有限集,并寫出集合A中的最小數(shù).】

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC內(nèi)角A,B,C的對邊分別是a,b,c,且滿足a( sinC+cosC)=b+c.
(I) 求角A的大。
(Ⅱ)已知函數(shù)f(x)=sin(ωx+A)的最小正周期為π,求f(x)的減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx﹣ax2+
(I) 當a= 時,判斷f(x)在其定義上的單調(diào)性;
(Ⅱ)若函數(shù)f(x)有兩個極值點x1 , x2 , 其中x1<x2 . 求證:
(i)f(x2)>0;
(ii)x1+x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本題滿分15如圖,在四棱錐平面PAD平面ABCD, ,E是BD的中點

求證:EC//平面APD;

求BP與平面ABCD所成角的正切值;

求二面角正弦值

查看答案和解析>>

同步練習(xí)冊答案