11.已知回歸直線的方程為$\widehat{y}$=2-2.5x,則x=25時,y的估計值是-60.5.

分析 利用回歸直線方程,求解判斷即可.

解答 解:回歸直線方程為y=2-2.5x,
則x=25時,y=2-2.5×25=-60.5,y的估計值為-60.5.
故答案為:-60.5.

點評 本題考查回歸直線方程的應用,基本知識的考查.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.函數(shù)f(x)=4sin22x是(  )
A.周期為$\frac{π}{4}$的偶函數(shù)B.周期為$\frac{π}{4}$的奇函數(shù)
C.當x=$\frac{π}{4}$時,函數(shù)的最大值為4D.當x=$\frac{π}{4}$時,函數(shù)的最小值為2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知集合A={1,2,3},B={a+2,a},若A∩B=B,則∁AB={2}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.下列說法正確的是( 。
A.樣本容量一定小于總體容量
B.用樣本平均數(shù)去估計總體平均數(shù)時,估計的精確性與樣本容量無關
C.一批產(chǎn)品,如果所測某種量的平均值與要求的標準值一致,則說明該產(chǎn)品在這方面是全部合格的
D.如果樣本方差等于零,則總體方差也一定等于0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.從4名男生、3名女生中選4人參加基本能力座談會,要求至少有1名女生參加的概率是(  )
A.$\frac{12}{35}$B.$\frac{34}{35}$C.$\frac{3}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.在式子$\widehat{a}$=$\widehat{y}$-$\widehat$$\overline{x}$中,($\overline{x}$,$\overline{y}$)稱為樣本點中心;殘差$\widehat{{e}_{i}}$=$\widehat{{y}_{i}}$-yi

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知函數(shù)f(x)=x3+ax2-2x在區(qū)間[2,+∞)上是增函數(shù),則實數(shù)a的取值范圍是[-$\frac{5}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知a,b∈R+,那么“l(fā)og${\;}_{\frac{1}{2}}$a>log${\;}_{\frac{1}{2}}$b”是“a<b”的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖,AB⊥BB1,AN∥BB1,AB=BC=AN=$\frac{1}{2}$BB1=4,四邊形BB1C1C為矩形,且平面BB1C1C⊥平面ABB1N.
(1)求證:BN⊥平面C1B1N;
(Ⅱ)設θ為直線C1N與平面CNB1所成的角,求sinθ的值;
(Ⅲ)設M為AB中點,在BC邊上求一點P,使MP∥平面CNB1,求$\frac{BP}{PC}$的值.

查看答案和解析>>

同步練習冊答案