15.已知f(n)=$\frac{1}{n+1}$+$\frac{1}{n+2}$+$\frac{1}{n+3}$+…+$\frac{1}{3n+1}$,則f(k+1)等于( 。
A.f(k)+$\frac{1}{3(k+1)+1}$B.f(k)+$\frac{2}{3k+2}$
C.f(k)+$\frac{1}{3k+2}$+$\frac{1}{3k+3}$+$\frac{1}{3k+4}$-$\frac{1}{k+1}$D.f(k)+$\frac{1}{3k+4}$-$\frac{1}{k+1}$

分析 根據(jù)f(n)的解析式分別寫(xiě)出f(k)與f(k+1),即可得出結(jié)論.

解答 解:f(n)=$\frac{1}{n+1}$+$\frac{1}{n+2}$+$\frac{1}{n+3}$+…+$\frac{1}{3n+1}$,
∴f(k)=$\frac{1}{k+1}$+$\frac{1}{k+2}$+$\frac{1}{k+3}$+…+$\frac{1}{3k+1}$
f(k+1)=$\frac{1}{(k+1)+1}$+$\frac{1}{(k+1)+2}$+$\frac{1}{(k+1)+3}$+…+$\frac{1}{3(k+1)+1}$
=$\frac{1}{k+2}$+$\frac{1}{k+3}$+$\frac{1}{k+4}$+…+$\frac{1}{3k+4}$
=f(k)+$\frac{1}{3k+2}$+$\frac{1}{3k+3}$+$\frac{1}{3k+4}$-$\frac{1}{k+1}$.
故選:C.

點(diǎn)評(píng) 本題考查了根據(jù)函數(shù)解析式寫(xiě)出對(duì)應(yīng)函數(shù)值的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)函數(shù)f(x)=x3-4x-a,0<a<2.若f(x)的三個(gè)零點(diǎn)為x1,x2,x3,且x1<x2<x3,則( 。
A.x1<-2B.x2>0C.x3<1D.x3>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.關(guān)于x的方程$\sqrt{3}$cosx+sinx-a=0在區(qū)間[0,π]上恰有兩個(gè)不等實(shí)根α,β,則α+β的值為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=ax3+bx2+cx,其導(dǎo)函數(shù)為f′(x)的部分值如表所示:
x-20138
f′(x)-10680-90
根據(jù)表中數(shù)據(jù),回答下列問(wèn)題:
(Ⅰ)實(shí)數(shù)c的值為6;當(dāng)x=3時(shí),f(x)取得極大值(將答案填寫(xiě)在橫線上).
(Ⅱ)求實(shí)數(shù)a,b的值.
(Ⅲ)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=(3-a)x-2+a-2lnx(a∈R).
(Ⅰ)若a≤3,試討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)>x在(0,$\frac{1}{2}$)上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)f(x)與g(x)是定義在同一區(qū)間[a,b]上的兩個(gè)函數(shù),若函數(shù)y=f(x)-g(x)在[a,b]上兩個(gè)不同的零點(diǎn),則稱f(x)與g(x)的“關(guān)聯(lián)區(qū)間”,若f(x)=$\frac{1}{3}{x^3}-{x^2}$-x與g(x)=2x+b的“關(guān)聯(lián)區(qū)間”是[-3,0],則b的取值范圍是( 。
A.[-9,0]B.$[0,\frac{5}{3}]$C.$[-9,\frac{5}{3}]$D.$[0,\frac{5}{3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.將全體正整數(shù)排成一個(gè)三角形數(shù)陣:按照如圖所示排列的規(guī)律:
(1)第7行從左到右的第3個(gè)數(shù)為24.
(2)第n行(n≥3)從左向右的第3個(gè)數(shù)為$\frac{{n}^{2}-n+6}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)正項(xiàng)數(shù)列{an}滿足:a1=$\frac{1}{2}$,an+1=$\frac{1}{1+an}$,n∈N*
(1)證明:若an<$\frac{\sqrt{5}-1}{2}$,則an+1>$\frac{\sqrt{5}-1}{2}$;
(2)回答下列問(wèn)題并說(shuō)明理由:
是否存在正整數(shù)N,當(dāng)n≥N時(shí)|an-$\frac{\sqrt{5}-1}{2}$|+|an+1-$\frac{\sqrt{5}-1}{2}$|<0.001恒成立?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.某汽車生產(chǎn)企業(yè)上年度生產(chǎn)某一品牌汽車的投入成本為10萬(wàn)元/輛.出廠價(jià)為13萬(wàn)元/每輛,年銷售量為5000輛,本年度為適應(yīng)市場(chǎng)需求,計(jì)劃提高產(chǎn)品檔次,適當(dāng)增加投入成本,若每輛車投入成本增加的比例為x(0<x<1),則出廠價(jià)相應(yīng)的提高比例為0.7x,年銷售量也相應(yīng)增加,已知年利潤(rùn)=(每輛車的出廠價(jià)-每輛車的投入成本)×年銷售量).
(1)若每年銷售量的比例為0.4x,寫(xiě)出本年度的年利潤(rùn)關(guān)于x的函數(shù)關(guān)系式;
(2)若年銷售量關(guān)于x的函數(shù)為y=3240(-x2+2x+$\frac{5}{3}$),則當(dāng)x為何值時(shí),本年度的年利潤(rùn)最大?最大利潤(rùn)為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案